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Electron self-energy effects on chiral symmetry breaking in graphene
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We investigate the dynamical breakdown of the chiral symmetry in the theory of Dirac fermions in graphene
with long-range Coulomb interaction. We analyze the electron-hole vertex relevant for the dynamical gap
generation in the ladder approximation, showing that it blows up at a critical value αc in the graphene fine
structure constant, which is quite sensitive to many-body corrections. Under static random phase approximation
(RPA) screening of the interaction potential, we find that taking into account electron self-energy corrections to
the vertex increases the critical coupling to αc ≈ 4.9, for a number N = 4 of two-component Dirac fermions.
When dynamical screening of the interaction is instead considered, the effect of Fermi velocity renormalization
in the electron and hole states leads to the value αc ≈ 1.75 for N = 4, substantially larger than that obtained
without electron self-energy corrections (≈0.99), but still below the nominal value of the interaction coupling in
isolated free-standing graphene.
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I. INTRODUCTION

The discovery of graphene, the material made of a one-
atom-thick carbon layer, has attracted a lot of attention as it
provides the realization of a system where the electrons have
conical valence and conduction bands, therefore behaving at
low energies as massless Dirac fermions.1–3 This offers the
possibility of employing the new material as a test ground
of fundamental concepts in theoretical physics, since the
interacting electron system represents a variant of strongly
coupled quantum electrodynamics (QED) affording quite
unusual effects.4–7

A remarkable feature of such a theory is that a sufficiently
strong Coulomb interaction may open a gap in the electronic
spectrum. This effect was already known from the study of
QED,8 where it corresponds to the dynamical breakdown
of the chiral U (2) symmetry of the theory. In the context
of graphene, such a mechanism is sometimes alluded as an
exciton instability though, given the absence of a gap between
valence and conduction bands, it becomes more appropriate to
describe the effect as a kind of charge-density-wave instability
of the 2D layer. The gap generation proceeds actually through
the development of a nonvanishing average value of the
staggered (sublattice odd) charge density in the underlying
honeycomb lattice, which leads to the generation of a mass
and opening of a gap for the Dirac quasiparticles.

The question of the dynamical gap generation was first
addressed in graphene in the approach to the theory with
a large number N of fermion flavors.9–12 The existence of
a critical point for the formation of an excitonic insulator
has been also suggested from second-order calculations of
electron self-energy corrections.13 More recently, Monte Carlo
simulations of the field theory have been carried out in
the graphene lattice,14,15 showing that the chiral symmetry of
the massless theory can be broken above a critical value for the
graphene fine structure constant αc ≈ 1.08.14 The possibility
of dynamical gap generation has been also studied in the ladder
approximation,16–19 leading in the case of static screening of
the interaction to an estimate of the critical coupling αc ≈ 1.62
for N = 4.16 Lately, the resolution of the Schwinger-Dyson
formulation of the gap equation has revealed that the effect of

the dynamical polarization can significantly lower the critical
coupling for dynamical gap generation, down to a value
αc ≈ 0.92 for N = 4.20

In this paper, we take advantage of the renormalization
properties of the Dirac theory in order to assess the effect of
the electron self-energy corrections on the chiral symmetry
breaking. In this respect, it has been found that the renormal-
ization of the quasiparticle properties can have a significant
impact, mainly through the increase of the Fermi velocity at
low energies.21,22 Then, we will consider the electron-hole
vertex accounting for the dynamical gap generation in the
ladder approximation, shown schematically in Fig. 1, and we
will supplement it by self-energy corrections to the electron
and hole states. This dressing of the quasiparticles will have
the result of increasing significantly the critical coupling at
which the chiral symmetry breaking takes place. Thus, under
static random phase approximation (RPA) screening of the
interaction potential in the ladder series, we will find the
critical value αc ≈ 4.9 at the physical number of flavors
N = 4. In agreement with the trend observed in Ref. 20, we
will see, however, that the more sensible dynamical screening
of the interaction has the effect of lowering substantially
that estimate, down to a value αc ≈ 1.75, which is below
the nominal value of the interaction coupling in isolated
free-standing graphene.

II. LADDER APPROXIMATION FOR STAGGERED
CHARGE DENSITY

We consider the field theory for Dirac quasiparticles
in graphene interacting through the long-range Coulomb
potential, with a Hamiltonian given by

H = ivF

∫
d2r ψi(r)γ · ∇ψi(r)

+ e2

8π

∫
d2r1

∫
d2r2 ρ(r1)

1

|r1 − r2|ρ(r2), (1)

where {ψi} is a collection of N/2 four-component Dirac
spinors, ψi = ψ

†
i γ0, and ρ(r) = ψi(r)γ0ψi(r). The matri-

ces γσ satisfy {γμ,γν} = 2 diag(1, −1, −1) and can be
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FIG. 1. (Color online) Self-consistent diagrammatic equation for
the vertex 〈ρm(q,ωq )ψ(k + q,ωk + ωq )ψ †(k,ωk)〉, equivalent to the
sum of ladder diagrams built from the iteration of the Coulomb
interaction (wavy line) between electron and hole states (arrow lines).

conveniently represented in terms of Pauli matrices as γ0,1,2 =
(σ3,σ3σ1,σ3σ2) ⊗ σ3, where the first factor acts on the two
sublattice components of the graphene lattice.

Our main interest is to study the behavior of the vertex for
the staggered (sublattice odd) charge density

ρm(r) = ψ(r)ψ(r). (2)

This operator gives the order parameter for the dynamical
gap generation, and the signal that it gets a nonvanishing
expectation value can be obtained from the divergence of the
response function 〈Tρm(q,t)ρm(−q,0)〉. The singular behavior
of this susceptibility can be traced back to the divergence at
q,ωq → 0 of the irreducible vertex


(q,ωq ; k,ωk) = 〈ρm(q,ωq)ψ(k + q,ωk + ωq)ψ†(k,ωk)〉1PI,

(3)

where 1PI denotes that 
 is made of one-particle irreducible
diagrams without external electron propagators.

In the ladder approximation, the vertex 
 is bound to satisfy
the self-consistent equation depicted diagrammatically in
Fig. 1. This equation can be solved perturbatively by iterating
the interaction between electrons and holes in the vertex, in
which case, this ends up being represented by the sum of ladder
diagrams. On the other hand, the self-consistent equation can
be written in compact form, specially at momentum transfer
q = 0 and ωq = 0. We recall at this point the expression of the
free Dirac propagator,

〈ψ(k,ωk)ψ†(k,ωk)〉free = i
−γ0ωk + vF γ · k

−ω2
k + v2

F k2 − iη
γ0. (4)

Given that 
 must be anyhow proportional to γ0, we get

− −γ0ωp + vF γ · p

−ω2
p + v2

F p2 − iη
γ0 
(0,0; p,ωp)

−γ0ωp + vF γ · p

−ω2
p + v2

F p2 − iη
γ0

= 
(0,0; p,ωp)

−ω2
p + v2

F p2 − iη
. (5)

The self-consistent equation for the vertex becomes then


(0,0; k,iωk) = γ0 +
∫

d2p

(2π )2

dωp

2π


(0,0; p,iωp)

ω2
p + v2

F p2

×V (k − p,iωk − iωp), (6)

where V (p,ωp) stands for the Coulomb interaction. We will
deal, in general, with the RPA to screen the potential, so that

V (p,ωp) = e2

2|p| + e2χ (p,ωp)
(7)

in terms of the polarization χ for N two-component Dirac
fermions.

Equation (6) is formally invariant under a dilatation of
frequencies and momenta, which shows that the scale of

(0,0; k,ωk) is dictated by the high-energy cutoff 
 needed
to regularize the integrals. The vertex acquires in general an
anomalous dimension γψ2 , which governs the behavior under
changes in the energy scale23


(q,ωq ; k,ωk) ∼ 
γψ2 . (8)

We recall below how to compute γψ2 , showing that it diverges
at a critical value of the interaction strength α = e2/4πvF .
This translates into a divergence of the own susceptibility
〈Tρm(q,t)ρm(−q,0)〉 at momentum transfer q → 0, providing
then the signature of the condensation of ρm(r) = ψ(r)ψ(r)
and the consequent development of the gap for the Dirac
quasiparticles.

III. ELECTRON SELF-ENERGY EFFECTS IN
STATICALLY SCREENED LADDER APPROXIMATION

We deal first with the approach in which electrons and holes
are dressed by self-energy corrections, while the Coulomb
interaction in Eq. (6) is screened by means of the static RPA
with polarization

χ (p,0) = N

16

|p|
vF

. (9)

The most important self-energy effect comes from the renor-
malization of the Fermi velocity at low energies,24,25 which
can be incorporated by replacing vF in Eq. (6) by the effective
Fermi velocity

ṽF (p) = vF + �v(p) (10)

dressed with the self-energy corrections �v(p). The expansion
of Eq. (6) in powers of �v(p) would amount to the iteration of
self-energy corrections in the electron and hole internal lines in
Fig. 1, showing that the present approach encodes a systematic
way of improving the sum of ladder diagrams for the
vertex 
.26

The electron self-energy corrections, as well as the terms
of the ladder series, are given by logarithmically divergent
integrals that need to be cut off at a high-energy scale

. Alternatively, one can also define the theory at spatial
dimension D = 2 − ε, which automatically regularizes all the
momentum integrals. After performing the frequency integral,
Eq. (6) then becomes


(0,0; k,ωk) = γ0 + e2
0

4κ

∫
dDp

(2π )D

×
(0,0; p,ωk)
1

ṽF (p)|p|
1

|k − p| , (11)

where e2
0 is related to e2 through an auxiliary momentum scale

ρ such that

e2
0 = ρεe2, (12)

and we have defined the dielectric constant

κ = 1 + Ne2

32vF

. (13)
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FIG. 2. Electron self-energy correction leading to a divergent
renormalization of the Fermi velocity vF .

In the ladder approximation, the Fermi velocity gets a
divergent correction only from the “rainbow” self-energy
diagram with exchange of a single screened interaction shown
in Fig. 2.24 The dressed Fermi velocity becomes

ṽF (p) = vF + e2
0

16π2κ
(4π )ε/2 


(
ε
2

)



(
1−ε

2

)



(
3−ε

2

)

(2 − ε)

1

|p|ε . (14)

The expressions (11) and (14) are singular in the limit ε → 0.
The most convenient way to show that all the poles in the ε

parameter can be renormalized away is to resort at this point
to a perturbative computation of 
(0,0; k,ωk).

The solution of Eq. (11) can be obtained in the form


(0,0; k,ωk) = γ0

(
1 +

∞∑
n=1

λn
0

rn

|k|nε

)
(15)

with λ0 = e2
0/4πκvF . Each term in the sum can be obtained

from the previous one by expanding 1/̃vF (p) in Eq. (11) in
powers of e2

0 and noticing that∫
dDp

(2π )D
1

|p|(m−1)ε

1

|p|
1

|k − p|

= (4π )ε/2

4π3/2



(

mε
2

)



(
1−mε

2

)



(
1−ε

2

)



[ 1+(m−1)ε
2

]



(
1 − m+1

2 ε
) 1

|k|mε
. (16)

At each given perturbative level, the vertex displays
then a number of poles at ε = 0. The crucial point
is that these divergences can be reabsorbed by pass-
ing to physical quantities defined by the multiplicative
renormalization:

vF = Zv(vF )ren, (17)

ψψ = Zψ2 (ψψ)ren. (18)

We observe that the scale of the single Dirac field ψ does
not need to be renormalized in this approach, as self-energy
corrections of the form shown in Fig. 2 with a statically
screened interaction do not modify the frequency dependence
of the Dirac propagator.

The renormalized vertex


ren = Zψ2
 (19)

can be actually made finite at ε = 0 with a suitable choice
of momentum-independent factors Zv and Zψ2 . Zv must be
chosen to cancel the 1/ε pole arising from 
(ε/2) in Eq. (14),
and it has therefore the simple structure

Zv = 1 + b1

ε
(20)

with b1 = −e2/16πκ(vF )ren. On the other hand, we have the
general structure

Zψ2 = 1 +
∞∑
i=1

ci

εi
. (21)

The position of the different poles must be chosen to
enforce the finiteness of 
ren = Zψ2
 in the limit ε → 0. The
computation of the first orders of the expansion gives, for
instance, the result:

c1(λ) = −1

2
λ − 1

8
ln(2) λ2 − 1

1152
[π2 + 120 ln2(2)]λ3 − 10π2 ln(2) + 688 ln3(2) + 15ζ (3)

6144
λ4

− 13π4 + 2064π2 ln2(2) + 144[716 ln4(2) + 37 ln(2)ζ (3)]

737280
λ5 + · · · ,

(22)

c2(λ) = 1

16
λ2 + 1

24
ln(2) λ3 + 1

18432
[5π2 + 744 ln2(2)]λ4 + 110π2 ln(2) + 8592 ln3(2) + 135ζ (3)

184320
λ5 + · · · ,

c3(λ) = − 1

768
ln(2) λ4 − 1

184320
[π2 + 360 ln2(2)]λ5 + · · · , c4(λ) = − 1

7680
ln(2) λ5 + · · · ,

where the series are written in terms of the renormalized
coupling λ defined by

λ ≡ ρ−εZvλ0 = e2

4πκ(vF )ren
. (23)

The physical observable in which we are interested is the
anomalous dimension γψ2 . The change in the dimension of 
ren

comes from the dependence of Zψ2 on the only dimensionful
scale ρ in the renormalized theory. Therefore we have23

γψ2 = ρ

Zψ2

∂Zψ2

∂ρ
. (24)

The original bare theory at D 
= 2 does not know about the
arbitrary scale ρ, and the independence of λ0 = ρελ/Zv on
that variable leads to

ρ
∂λ

∂ρ
= −ελ − λb1(λ). (25)

At ε = 0, this is the well-known expression of the scale
dependence of the effective interaction strength, arising from
the renormalization of the Fermi velocity.24 The anomalous
dimension becomes finally27

γψ2 = ρ

Zψ2

∂λ

∂ρ

∂Zψ2

∂λ
= −λ

dc1

dλ
. (26)
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FIG. 3. (Color online) Plot of the absolute value of the coefficients
c

(n)
1 in the expansion of c1(λ) as a power series of the coupling λ.

In the derivation of Eq. (26), it is implicitly assumed that
poles in the ε parameter cannot appear at the right-hand side
of the equation. For this to be true, the set of equations

dci+1

dλ
= ci

dc1

dλ
− b1

dci

dλ
(27)

must be satisfied identically.27 Quite remarkably, we have
verified that this is the case, up to the order λ17, we have
been able to compute numerically the coefficients in Eq. (21).
This is the proof of the renormalizability of the theory, which
guarantees that physical quantities like γψ2 remain finite in the
limit ε → 0.

From the practical point of view, the important result is the
evidence that the perturbative expansion of c1(λ),

c1(λ) =
∑

n

c
(n)
1 λn, (28)

approaches a geometric series in the λ variable. The plot of
the coefficients c

(n)
1 computed numerically up to order λ17 is

shown in Fig. 3. It can be checked that the coefficients grow
exponentially with the order n, in such a way that

−c1(λ) �
∞∑

n=1

dnλn + regular terms. (29)

An estimate of d can be obtained from the coefficients
available in the perturbative series of c1(λ). The ratio between
consecutive c

(n)
1 increases with the order n, converging toward

a limit value. The best fit of the asymptotic behavior allows us
to estimate a radius of convergence,

λc ≈ 0.56. (30)

This has to be compared with the value found in the approach
neglecting self-energy corrections, which leads to λc ≈ 0.45,18

in close agreement with the result of Ref. 16. The critical
coupling in the variable λ can be used to draw the boundary
for dynamical gap generation in the space of N and α =
e2/4π (vF )ren, recalling that

λ = α

1 + Nπ
8 α

. (31)

The corresponding phase diagram is represented in Fig. 4. For
N = 4, we get, in particular, the critical coupling αc ≈ 4.9,
significantly above the critical value that would be obtained
from the radius of convergence without self-energy corrections
(αc ≈ 1.53).

Ρm  0

Ρm  0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

1 N

e2
4Π

v F

FIG. 4. (Color online) Phase diagram showing the boundary
between the metallic phase and the phase with dynamical gap
generation (〈ρm〉 
= 0) in the ladder approximation. The thin dashed
(solid) line represents the phase boundary obtained with static
(dynamic) RPA screening of the interaction potential and no electron
self-energy corrections. The thick dashed (solid) line represents
the boundary after including the effect of the electron self-energy
corrections on top of the static (dynamic) RPA screening of the
interaction in the ladder series.

IV. ELECTRON SELF-ENERGY EFFECTS IN
DYNAMICALLY SCREENED LADDER

APPROXIMATION

In the framework of the ladder approximation, one can
also study the effect of electron self-energy corrections under
dynamical screening of the Coulomb interaction potential. We
can improve the static RPA by considering the full effect of the
frequency-dependent polarization, which for Dirac fermions
takes the form24

χ (p,ωp) = N

16

p2√
v2

F p2 − ω2
p

. (32)

This expression can be introduced in Eq. (6) to look again
for self-consistent solutions for the vertex 
(0,0; k,ωk). Given
that, in this case, we must resort to numerical methods for
the resolution of the integral equation, we can go beyond the
self-energy effects considered before by taking into account the
electron self-energy corrections in the RPA improved with the
polarization (32). In this approach, the behavior of the dressed
Fermi velocity ṽF (p) is given as a function of g = Ne2/32̃vF

by the nonlinear equation25

∂ ln ṽF

∂ ln |p| = − 8

Nπ2

(
1 + arccos g

g
√

1 − g2
− π

2

1

g

)
. (33)

We have then used the solution of Eq. (33) to replace vF in
Eq. (6) by the momentum dependent ṽF , which represents a
significant improvement in the sum of self-energy corrections
in the ladder series for the vertex.

In this procedure, we find again that there is a critical
coupling in the variable α = e2/4πvF at which 
(0,0; k,ωk)
blows up, marking the boundary between two different regimes
where Eq. (6) has respectively positive and negative solutions.
In practice, we have solved the integral equation by defining the
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vertex in a discrete set of points in frequency and momentum
space. One can take as independent variables in 
(0,0; k,ωk)
the modulus of k and positive frequencies ωk . We have adopted
accordingly a grid of dimension l × l covering those variables,
with l running up to a value of 200 for which it is still viable
to invert a matrix of dimension l2.

As a check of our approach, we have compared the
results of the numerical diagonalization of (6), still keeping
the undressed Fermi velocity vF , with the values of the
critical coupling in Ref. 20, where the resolution of the gap
equation has been accomplished with the frequency-dependent
polarization. We have relied on the scale invariance of our
model to find the trend of αc at large l, as the critical coupling
must obey a finite-size scaling law

αc(l) = αc(∞) + c

lν
. (34)

At N = 4, we get αc(200) ≈ 1.08 and the estimate αc(∞) ≈
0.99, which turns out to be close to the critical cou-
pling αc ≈ 0.92 found in Ref. 20, providing a nice
check of our computational approach in the case of
unrenormalized vF .

The electron self-energy corrections lead anyhow to a
substantial increase in the values of the critical coupling
αc(l). This is a decreasing function of l, as the limit l → ∞
corresponds to the large-volume limit of the system. Then,
as a result of diagonalizing Eq. (6) with the effective ṽF , we
have chosen to represent in Fig. 4 the upper bound αc(200)
to the critical coupling as a function of N . We observe that
for N � 3, the values of the critical coupling are larger than
those obtained with static screening of the interaction potential,
while the situation is inverted for N � 3. In coincidence with
the findings of Ref. 20, there is indeed no upper limit on N

for the onset of chiral symmetry breaking in this approach. At
N = 4, we get

αc(200) ≈ 1.75, (35)

which is substantially smaller than the value found in Sec. III
with the static RPA screening in the ladder series. These
results support the idea that, in the particular case of graphene
(N = 4), the nominal coupling of the system in vacuum
(α ≈ 2.2) should be above the critical coupling for dynamical
gap generation. This is reinforced by the fact that other effects
neglected thus far have to do with the electron self-energy
corrections to the own polarization χ . These should lead to a
reduction of the screening and the consequent enhancement of
the effective interaction strength. The values that we find for αc

should be taken in this regard as an upper bound for the critical
coupling, at least when compared with the result of including
the effect of Fermi velocity renormalization in the bare
polarization.

V. CONCLUSION

In this paper, we have considered the impact that electron
self-energy corrections may have on the chiral symmetry
breaking in the interacting theory of Dirac fermions. Our
starting point has been the ladder approximation for the
electron-hole vertex appearing in the response function for

dynamical gap generation, which we have supplemented by
including systematically the self-energy corrections to electron
and hole states in the ladder series.

In this framework, we have been able to account for the
effect of the Fermi velocity renormalization on the critical
coupling for dynamical gap generation. In this respect, it
has been already suggested that the growth of the Fermi
velocity at low energies can have a deep impact to prevent
the chiral symmetry breaking.22,28 The scale dependence of
the Fermi velocity, expressed nonperturbatively in Eq. (33),
has been already observed in experiments with graphene
at very low doping levels.29 Our results show actually that
the effect of renormalization of the Fermi velocity induces
a significant reduction in the strength of the dynamical
symmetry breaking in graphene, leading to a critical coupling
αc ≈ 4.9 in the case of static RPA screening of the interaction
potential in the ladder series, and to a value αc ≈ 1.75 in
the more sensible instance of dynamical screening of the
interaction.

One of the main conclusions of this work is that the
screening effects must be treated accurately in order to make a
reliable estimate of the critical coupling for dynamical gap
generation in graphene. This is so as such an instability
depends strongly on the singular behavior of the Coulomb
interaction in the undoped system. In this regard, the situation
is quite different to the case of bilayer graphene, where several
low-energy instabilities have been also predicted.30–33 These
can be traced back to the divergence of objects like the
electron-hole polarization, which results from the particular
form of the band structure and does not require a long-range
interaction. In monolayer graphene, the instability toward
chiral symmetry breaking appears to be quite sensitive to
many-body corrections to the Coulomb interaction, which
makes more delicate the precise computation of the critical
interaction strength.

The other important conclusion is that the value αc ≈ 1.75
resulting from the self-energy corrections still remains below
the nominal coupling for graphene in vacuum. This means
that an isolated free-standing layer of the material should be in
the phase with dynamical gap generation, which is apparently
at odds with present experimental measurements in suspended
graphene samples. A key observation is, however, that, if chiral
symmetry breaking is to proceed in graphene according to
the present estimates, it is going to lead to a gap at least
three orders of magnitude below the high-energy scale of the
Dirac theory, as found in the resolution of the gap equation.20

This suggests then that the dynamical gap generation cannot
be discarded in isolated free-standing graphene, though its
experimental signature may be only found in suitable samples,
for which the Fermi level can be tuned within an energy range
below the milli-electron-Volt scale about the charge neutrality
point.
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