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We show that the interaction between flexural phonons, when corrected by the exchange of electron-

hole excitations, may drive the graphene sheet into a quantum critical point characterized by the vanishing

of the bending rigidity of the membrane. Ripples arise then due to spontaneous symmetry breaking,

following a mechanism similar to that responsible for the condensation of the Higgs field in relativistic

field theories, and leading to a zero-temperature buckling transition in which the order parameter is given

by the square of the gradient of the flexural phonon field.
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Introduction.—The discovery of graphene [1–3], the
two-dimensional (2D) metallic crystal made of a carbon
monolayer, has spurred a flurry of research activity due to
its unique electronic properties and potential applications
[4]. Its realization can be taken as a nice check of the
predicted stability of membranes with crystalline order,
in which the fixed connectivity allows for the existence
of a low-temperature flat phase [5]. Detailed analyses of
this type of membranes have shown that their elastic
properties have anomalous momentum dependence, with
a rigidity that diverges at long wavelength [6–9]. On top of
that, graphene is also a prototype of electronic crystalline
membrane, where the mobile electrons are strongly
coupled to the elastic degrees of freedom [10,11].

A remarkable and unexpected property observed in gra-
phene is its tendency to develop ripples, or long wave-
length modulations of the out-of-plane displacements, by
which the system freezes into a corrugated average con-
figuration [12]. Ripples are expected to have a significant
impact on electronic transport in graphene [13].

The origin of graphene’s rippling has been heavily de-
bated. In exfoliated graphene, ripples are correlated to
some extent with the irregularities of the substrate [14].
But it has been also observed that they may arise in part as
an effect intrinsic to the 2D membrane [12]. In this respect,
there is evidence that variable length �-bonds character-
istic of carbon may underlie ripple formation [15]. Other
works have focused on the behavior of graphene as an
electronic membrane [10,11] in order to investigate the
rippling instability.

In this Letter we take farther steps in the study of the role
of �-electrons in the ripple formation mechanism, adopt-
ing a self-consistent method supplemented by a renormal-
ization group (RG) approach to the phonon self-energy
corrections. The nonperturbative character of this frame-
work allows us to find a critical value of the electron-
phonon coupling at which the effective bending rigidity
of the membrane vanishes. This effect places the system on
the verge of the transition to a new ground state, that

proceeds upon the slightest negative tension applied to
the sheet. We show that this follows a mechanism similar
to that responsible for the condensation of the Higgs field
in relativistic field theories, with an order parameter given
in this case by the square of the gradient of the flexural
phonon field, and leading to a predicted buckled phase
consistent with experimental observations.
Softening of flexural phonons.—We describe the elastic

deformations of a graphene sheet by the vector field
u ¼ ðu1; u2; hÞ, where u1, u2 represent the in-plane dis-
placement with respect to the equilibrium position and h is
the out-of-plane shift. The elastic energy of the membrane
is expressed in terms of the strain tensor

uijðrÞ ¼ 1
2ð@iuj þ @jui þ @ih@jhÞ (1)

Coordinate r runs over the 2D graphene membrane. The
bare parameters involved in the continuum elasticity model
for graphene are the mass density �, the bending rigidity

(� � 1 eV) and the in-plane shear (� � 9 eV= �A2) and

bulk (�þ � � 12:6 eV= �A2) moduli. The action for the
phonon fields reads

Su ¼ 1

2

Z
dtd2rð�ð@tuÞ2 � �ðr2hÞ2 � 2�u2ij � �ðuiiÞ2Þ

(2)

Respect to other conventional insulating membranes,
a novel effect in graphene is that the electronic carriers
couple to the displacement of the sheet, in such a way that
it gives rise to another source of interaction between the
phonon fields [10,11]. We will consider the effect of elec-
trons from the � bands of graphene, represented by the
field �ðrÞ, on the renormalization of elastic parameters.
The strongest coupling between electrons and phonons
comes from the on-site deformation potential [16],

Se-ph ¼
Z

dtd2r�yðrÞ�ðrÞðgin@iui þ gout@ih@ihÞ (3)

with general momentum dependent couplings gin=outðqÞ.
Rotational invariance implies that at small momenta gin
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and gout must coincide. A microscopic analysis shows
however that gin=outðqÞ ¼ gð1� cin=outa

2jqj2 þ . . .Þ, where
a is the C-C distance and cin � 0:3, cout � 0:1 in a tight-
binding model with up to third-neighbor hopping[17].
Detailed electron-phonon calculations have also shown
that gin has very small values & 1 eV at the K point of
the Brillouin zone [18].

The energy of the electronic excitations is proportional
to the Fermi velocity vF and (for a given momentum) much
larger than that of other modes in the problem. Thus, we
can first integrate out the electron degrees of freedom,
which leads to a phonon interaction due to the exchange
of electron-hole pairs, proportional to the static charge
susceptibility �ðq; 0Þ � �jqj=vF [19]. One may then inte-
grate out the in-plane phonons, and arrive at the action for
the flexural modes

S ¼ 1

2

Z d2q

ð2�Þ2
d!

2�
ð�!2 � �q4Þhðq; !Þhð�q;�!Þ

� 1

2

Z d2q

ð2�Þ2
d!

2�
KðqÞuðq; !Þuð�q;�!Þ (4)

where uðq; !Þ stands for the Fourier transform of
1
2Pij@ih@jh, Pij being the transverse projector [5], and

KðqÞ ¼ 2�þ �� g2outjqj=vF � ð�� gingoutjqj=vFÞ2
2�þ �� g2injqj=vF

(5)

An electron-induced bulk instability could occur if the
pole in the coupling function KðqÞ would fall inside the
first Brillouin zone, leading to a vanishing velocity of in-
plane longitudinal phonons. The realization of such an
instability is ruled out however in a real graphene system,
since experimentally the in-plane integrity of graphene is
intact. But even if the coupling ginðqÞ is not strong enough
to destabilize the bulk, exchange of particle-hole pairs can
make the flexural phonon coupling function KðqÞ negative
(i.e., attractive), which indicates a potential instability
of out-of-plane displacements. The effect of the negative
terms in Eq. (5) is only significant at short wavelengths,
and vanishes in the limit q ! 0. Then, in order to study the
competition between positive and negative couplings in
Eq. (5), we may approximate this coupling function by
the constant term K0 and the dominant powers of jqj

KðqÞ � K0 þ K1jqj þ K2jqj2 (6)

with �K1 / g2 and �K2 / g4.
The resulting interactions tend to enhance or suppress

the low-energy rigidity � depending on their repulsive or
attractive character. This is encoded into the corrections
to the phonon self-energy �ðq; !Þ represented in Fig. 1.
Computing the full propagator of the flexural phonons
from the expression D�1ðq; !Þ ¼ !2 � ð�0=�Þq4 �
�ðq; !Þ, we find that the dressed bending rigidity �ðqÞ is
given by the self-consistent equation

�ðqÞ ¼ �0 þ 1

8�2

Z
d2psin4ð�q;pÞKðjq� pjÞ

jq� pj4
jpj2ffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðpÞp :

(7)

We note that Eq. (7) amounts to the sum of a vast class of
diagrams from multiple iteration of first-order self-energy
corrections in the phonon propagator. Solutions in different
regimes of the couplings can be seen in Fig. 2(a). We
observe that, for a sufficiently large value g� of the defor-
mation potential, �ðqÞ vanishes at a certain momentum,
bouncing back for smaller values of jqj. In this picture, g�
plays the role of critical coupling above which we would
find negative values of the bending rigidity, suggesting a
flexural instability in the system. In this situation, a RG
analysis may be also pertinent in order to capture the low-
energy scaling of the couplings Kn.
The RG scheme proceeds by progressive integration

of energy shells, starting from a high-energy cutoff

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffi
�0=�

p
q2c, to approach the low-energy regime. The

bare couplings Kn are then corrected to lowest order by the
exchange of two flexural phonons given by the diagram
in Fig. 3(a), which shows a logarithmic dependence on the
cutoff qc. This can be absorbed into a renormalization of
the effective couplings, leading to the scaling with the
running cutoff qc ! 0

K 0

(b)(a)

FIG. 1. Lowest order corrections to the self-energy of flexural
phonons (represented by a curly line) arising from (a) the four-
phonon interaction K0 and (b) the exchange of electron-hole
excitations (represented by the bubble with fermion lines).
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FIG. 2 (color online). (a) Effective momentum dependence of
� obtained from Eq. (7) for �0 ¼ 1:0 eV, K0 ¼ 20:5 eV= �A2,
and values of the deformation potential g equal (from top to
bottom) to 0, 10, 23.06, and 23.16 eV (the last solution already
has a small imaginary part). (b) Scaling of � (dashed lines) and
the renormalized deformation potential gren (full lines) in the RG
approach, for bare values of g equal to 0, 22, 24, 26, 28, and
30 eV. The lowest flow of � corresponds to the largest value
of g, with couplings already close to the regime where

Ki=16�
ffiffiffiffiffiffiffiffiffi
��3

p � 1. a is the C-C distance.
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qc
@Kn

@qc
¼ 3

64�

X
iþj¼n

KiKjffiffiffiffi
�

p
�3=2

: (8)

A scaling equation can be also written for the rigidity �,
as the self-energy diagrams in Fig. 1 display a logarithmic
dependence on the cutoff qc,

qc
@�

@qc
¼ � 3

16�

X2
n¼0

qnc
Knffiffiffiffiffiffiffi
��

p : (9)

A most refined approach then consists in supplementing
the solution of Eq. (7) with the RPA-like scheme encoded
in Eq. (8) (the corrections deriving from (9) are actually a
subset of those accounted for by (7)). In the RG approach,
the electron-phonon couplings get a momentum-
dependence that can be obtained from the scaling of the
couplings Ki, leading to renormalized values of the defor-
mation potential gren shown in Fig. 2(b). The important
point is whether the critical g� � 23:1 eV predicted from
(7) can be reached upon renormalization of the couplings
down to the scale 10�1a�1 where � vanishes in Fig. 2(a).
We can see from Fig. 2(b) that the critical value gren �
23:1 eV can be found at the low momentum scale starting
from a bare deformation potential g * 25 eV. It is then
reassuring that the scaling approach can produce renormal-
ized couplings at q� 10�1a�1 that are consistent with the
input required to find the instability in the self-consistent
approach. This has otherwise the capability of producing a
more accurate correction to the bending rigidity � on top
of the RG effect. We stress finally that gren corresponds to
the observable quantity to be measured in transport experi-
ments. In this respect, it is interesting to note that the
critical value of � 23:1 eV falls within the estimates re-
cently obtained from a detailed fit of experimental results
of the resistivity, over a wide range of doping and tempera-
ture of the graphene layer [20].

Spontaneous symmetry breaking.—At vanishing �, the
elastic properties computed from the h field develop severe
infrared divergences, reflecting that the theory is then
quantized around an unstable (flat) classical solution. The
standard technique to compute the configuration of stable
equilibrium of the system is the minimization of the effec-
tive action SeffðhÞ [21]. While symmetry breaking has been
described before in the statistical mechanics of polymer-
ized membranes [22], here we deal with the computation of
the effective action of the quantum theory at zero tempera-
ture. This can be accomplished by introducing first an
auxiliary field � with gaussian fluctuations to decouple

the four-phonon interaction in (4), allowing us to express
the interaction term as

Sint ¼ 1

2

Z d2q

ð2�Þ2
d!

2�
�q;!ð��q;�! � 2

ffiffiffiffi
K

p
uð�q;�!ÞÞ:

(10)

The field h has to be decomposed into an average field hav
and quantum fluctuations ~h. The effective action SeffðhavÞ
is obtained by integrating over ~h [23], what can be accom-
plished exactly in the formal limit of a large number of
dimensions d of the ambient space containing the
membrane.
At large d, the effective action is built from diagrams

with just one loop of fluctuating ~h fields, as represented
in Fig. 3(b). In the case of static field configurations
uavðq; !Þ ¼ 	ð!ÞuavðqÞ and �q;! ¼ 	ð!Þ�q, we get the

contribution to the effective action

iSð1Þeffð�Þ ¼
X1
n¼2

1

n

Kn=2
0

ð2�Þn
Z
jqij<�

Yn
i¼1

d2qi
ð2�Þ2 �qi

	

�X
qi

�

�
Z
jpj>�

d2p

ð2�Þ2
d!p

2�
sin2ð�p;qiÞ

p2n

ð�!2
p � �p4Þn :

(11)

We focus here on the field configurations as � ! 0 and the
momentum of �q goes to zero, since this is the regime

where terms with higher powers of the field become in-
creasingly infrared divergent.
The perturbative series has to be summed first in (11) to

obtain a sensible result in the limit � ! 0. After factoring
out the volume of the space, we obtain the contribution
to the effective potential

iVð1Þ
eff ð�0Þ ¼

Z d2p

ð2�Þ2
d!p

2�

�
�

ffiffiffiffiffiffi
K0

p
2�

�0

p2

��!2
p þ �p4

þ log

�
1þ

ffiffiffiffiffiffi
K0

p
2�

�0

p2

��!2
p þ �p4

��
; (12)

where �0 � ð�=2�Þ2�ðq ! 0Þ. Performing now the loop
integration, we get from the sum of the zero-loop and the
one-loop effective potential

Veffðhav; �0Þ ¼ 1

8�2

�
� �2

0 þ 2
ffiffiffiffiffiffi
K0

p �2

ð2�Þ2 uavðq ! 0Þ�0

�

þ 1

8�2

K0

16�
ffiffiffiffi
�

p
�3=2

� �2
0

�
log

� ffiffiffiffiffiffi
K0

p
8�

ffiffiffiffiffiffiffi
��

p �0

Ec

�
þ 1

2

�
: (13)

Quite remarkably, Eq. (13) exactly reproduces the struc-
ture of the effective potential for a relativistic scalar field
theory in 3þ 1 dimensions [21]. This means that our
model actually follows the same mechanism of symmetry
breaking characteristic of a Higgs field in particle physics.

2

1

n

(b)(a)

FIG. 3. (a) Exchange of flexural phonons (curly lines) leading
to logarithmic cutoff-dependence of the interactions K0, K1 and
K2. (b) Generic form of the diagrams building up the series of
the � field (dashed lines) in the effective potential.
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In close analogy with the analysis of Ref. [24], the slightest
tension in our model will add to the potential a term
proportional to 
uavðq ! 0Þ, destabilizing the minimum
at the origin for 
 < 0. The mode �0 can be integrated by
the saddle-point method, showing that Veff will get then the
typical ‘‘mexican-hat’’ shape as a function of uav, implying
a minimum with rhav � 0. Quantizing now the theory

around this configuration leads to fluctuations ~h which
get a positive effective tension, in the same fashion as the
physical Higgs field develops positive mass square. This is
the way in which the elastic properties can be finally
computed getting rid of infrared divergences.

We find therefore that there is a buckling transition
between the regimes of positive and negative tension in
graphene. The nature of the critical (tensionless) theory is
less clear, as there is still controversy about whether a
scalar field theory may undergo symmetry breaking start-
ing with a massless scalar field. Anyhow, in a typical
experimental setup, graphene is held in place by a scaffold
or a substrate, which induces certain amount of tension in
the membrane. This has been estimated to be of the order
of �1 eV=nm2 [10]. In our analysis of the symmetry
breaking, a negative tension 
 shifts the minimum of the
effective potential to ð�=2�Þ2uavðq ! 0Þ ¼ �
=2K0.
This quantity turns out to be of the order of �10�4 with
the above estimate. Assuming that ð�=2�Þ2 scales in in-
verse proportion to the volume of the space, we obtain that
the average values of jrhavjmust be of the order of�10�2,
which is consistent with the typical aspect ratio of ripples
in graphene.

In the tensionless limit, our model also shares with
massless scalar field theories in 3þ 1 dimensions the
intriguing feature that the effective potential becomes
complex beyond a certain value of the field. This kind of
instability has led to speculate about the possibility that the
absolute minimum of the effective potential may be away
from the origin in the critical theory [24]. We hope that the
connection between buckling and the Higgs condensation
may shed light into this question, while carrying out ex-
periments at the low-energy scale of graphene.

Conclusion.—We have seen that the interaction between
flexural phonons mediated by particle-hole excitations
may place the graphene sheet very close to a quantum
critical point characterized by the strong suppression of
the bending rigidity of the membrane. The same effect can
be expected from other degrees of freedom which couple
to the lattice deformations, such as absorbed impurities.
The effective potential of the zero-temperature theory dis-
plays then a mechanism of symmetry breaking that paral-
lels that of the Higgs field in particle physics, the role of
order parameter being played in graphene by the square
of the gradient of the flexural phonon field. We have
found that the system must be unstable towards a buckling
transition that is the analogue of Higgs condensation,
showing another way to employ graphene as a test ground
of fundamental concepts in theoretical physics.
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