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We show that, under a strong magnetic field, a 3D nodal-line semimetal is driven into a topological
insulating phase in which the electronic transport takes place at the surface of the material. When the
magnetic field is perpendicular to the nodal ring, the surface states of the semimetal are transmuted into
Landau states which correspond to exceptional points, i.e., branch points in the spectrum of a non-
Hermitian Hamiltonian which arise upon the extension to complex values of the momentum. The complex
structure of the spectrum then allows us to express the number of zero-energy flat bands in terms of a new
topological invariant counting the number of exceptional points. When the magnetic field is parallel to the
nodal ring, we find that the bulk states are built from the pairing of surfacelike evanescent waves, giving
rise to a 3D quantum Hall effect with a flat level of Landau states residing in parallel 2D slices of the 3D
material. The Hall conductance is quantized in either case in units of e2=h, leading in the 3D Hall effect to a
number of channels growing linearly with the section of the surface and opening the possibility to observe a
macroscopic chiral current at the surface of the material.
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Introduction.—Currently, there is a huge amount of
interest in the new family of 3D topological semimetals,
which include Dirac and Weyl semimetals with isolated
Dirac or Weyl nodes in the band structure [1–6], and the
nodal-line semimetals (NLSMs) with a continuous line
of nodes in the Brillouin zone [7,8]. There are already
several experimentally established examples of topological
NLSMs, including PbTaSe2 [9], PtSn4 [10], and ZrSiS
[11]. Apart from the theoretical interest, as their low-energy
excitations behave as relativistic fermions, they exhibit very
remarkable features, like the presence of a 2D manifold of
surface states forming nearly flat or very narrow bands,
with the potential for very strong correlations [12].
Another relevant instance leading to a large degeneracy

of electronic states arises in low-temperature 2D samples
in the presence of a strong magnetic field, where the Hall
conductivity can be quantized as first discovered by von
Klitzing et al. [13]. The explanation of this phenomenon is
the paradigmatic example of the application of topological
concepts in condensed matter physics. The integer values
dictating the quantization of the Hall conductivity can be
written in terms of topological invariants known as Chern
numbers, closely related to Berry phases [14].
As long as the 2D quantum Hall effect is supported by

boundary states, it turns out to be quite interesting to ask
about the new physical effects which may arise from the
plethora of surface states of a 3DNLSM in a strongmagnetic
field. In this setting, it becomes relevant to investigate
whether the manifold of surface states may build a quantized
3D Hall effect, and the kind of boundary states which may
support the electronic transport in the 3D material.

Several studies have investigated the effect of a strong
magnetic field in 3D semimetals [15,16]. It has been
proposed, for instance, that closed orbits can be formed in
the bulk by connecting the Fermi arcs at opposite surfaces of
3D Weyl semimetals, allowing for a quantum Hall effect
[17,18]. In the case of the NLSMs, the possibility has been
shown of having a zero-energy level and Landau bands
following a pattern similar to that from Dirac fermions [19].
In this Letter, we unveil the potential of the 3D NLSMs

to support a phenomenon which is the analogue of the 2D
quantum Hall effect but promoted to a higher spatial
dimension. We are going to see that, when the magnetic
field is perpendicular to the nodal ring, the evanescent
states of the NLSM remain stabilized in a zero-energy level
with huge 2D degeneracy arising from the collapse down to
zero energy of a large number of 2D-like Landau levels. On
the other hand, a magnetic field parallel to the nodal ring
has the effect of pairing the evanescent waves inside the
bulk of the NLSM, leading to states that reside in parallel
2D slices of the 3D material. This constitutes then a perfect
version of a 3D quantum Hall effect [20], of which very few
examples are known [21–25]. In either case, the low-energy
bulk states in 3D slab geometries turn out to be localized,
while only the surface states contribute to the electronic
transport (as shown schematically in Fig. 1).
We will see that the topological protection of the

evanescent states in a strong magnetic field lies in their
connection to exceptional points, i.e., branch points which
arise upon extension of the spectrum to complex values of
the momentum [26,27]. The properties of the exceptional
points have been recently applied to describe several
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unconventional features in electron systems [28–30].
Exceptional points have been also found in the study of
non-Hermitian Hamiltonians [31] and the experimental
observation of photonic crystals [32]. In the present
context, we will see that the exceptional points can be
applied to build a new topological index addressing the
stability and quantization of the Hall effect in 3D NLSMs.
Surface Hall effect.—Our starting point is a continuum

model of NLSM, whose suitability is well documented from
the description of the compounds of the CaP3 family [33].
In units in which ℏ ¼ 1 [34], the Hamiltonian is given by

HNL ¼ ðm0 þm1∇2Þσz − iv∂zσx; ð1Þ
where σi (i ¼ x, y, z) stand for the Pauli matrices. In terms
of the 3D momentum k, the model displays two bands with
energy

ε ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 −m1k2Þ2 þ v2k2z

q
: ð2Þ

We find a line of nodeswhere the two bandsmeet in the plane
kz ¼ 0, corresponding to the circular set k2x þ k2y ¼ m0=m1.
A remarkable feature is that the projection of the nodal ring
onto a given surface leads to a so-called drumhead, filled
by surface states forming in general nearly flat or very
narrow bands.
In the presence of a magnetic field in the z direction

(perpendicular to the plane of the nodal line), the vector
potential can be written asA ¼ ð−By; 0; 0Þ. Setting units in
which e ¼ 1 and c ¼ 1, the Hamiltonian of the NLSM
becomes

H⊥ ¼ ðm0 þm1½−ð−i∂x − ByÞ2 þ ∂2
y þ ∂2

z �Þσz − iv∂zσx:

ð3Þ
The eigenstates in the bulk of the semimetal are given in
terms of the eigenfunctions of a harmonic oscillator
centered at y ¼ kx=B, with energy eigenvalues

εn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0 −m1k2z − 2m1Bðnþ 1=2Þ�2 þ v2k2z

q
; ð4Þ

where n ≥ 0 is the Landau level index.

On the other hand, eigenstates decaying from a 2D
boundary of the semimetal (at z ¼ 0) take the form

Ψ ∼ eiwzχðx; yÞη̂; ð5Þ
with w ¼ kz þ iα. Taking η̂ such that σyη̂ ¼ �η̂, a pair of
zero-energy eigenstates can be found for each sign of the
pseudospin σy. In the model with 4m0m1 < v2, for in-
stance, the zero-energy evanescent states are given by

w ¼ �i
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 4m1½m0 −m12Bðnþ 1=2Þ�

p
2m1

ð6Þ

where the sign in front the right-hand side of Eq. (6)
matches the sign of the pseudospin σy.
This construction reveals that, in the presence of a

magnetic field perpendicular to the nodal ring, the drum-
head surface states are converted into Landau states
decaying from the surface of the NLSM. In general, this
transmutation leads to the collapse of a great number of
Landau levels down to zero energy. This degeneracy
applies to Landau levels with order n such that
m0 − 2m1Bðnþ 1=2Þ > 0, up to a maximum value beyond
which the condition (6) inverts the sign of one of the
momenta. The band structure for a slab of width W ¼
40 nm (in the z direction) in a magnetic field with B ¼
30 T is represented in Fig. 2, which illustrates the huge
degeneracy of Landau states in the zero-energy level.
The zero modes of (3) indeed have a deep meaning.

The Hamiltonian has particle-hole symmetry, realized as
σyH⊥σy ¼ −H⊥, so that zero-energy eigenvalues corre-
spond to points in the complex plane ðkz; αÞ where two
eigenstates Ψ and σyΨ coalesce. This is the distinctive
feature of an exceptional point—that is, a branch point
singularity where two different branches of the complex

FIG. 1. Schematic plot of the surface electronic currents in a slab
of 3D NLSM for two orthogonal directions of the magnetic field.

FIG. 2. Band structure for a slab of NLSM of width W ¼
40 nm (lateral dimension Δy ¼ 40 nm), for parameters
m0 ¼ 1.2 eV, m1 ¼ 1.0 eV nm2, v ¼ 0.5 eV nm, and magnetic
field (perpendicular to the nodal ring) B ¼ 30 T. The energy
is measured in electron-volts and the momentum in inverse
nanometers.
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spectrum meet. This can be seen in Fig. 3, which shows the
Riemann sheet of the spectrum of a NLSM for n ¼ 0.
Such exceptional points are at the origin of the topo-

logical protection of the surface Landau states under very
general perturbations preserving the particle-hole sym-
metry. In the case of a periodic perturbation Uðx; yÞ, the
eigenvalue problem can be written as

½H⊥ þUðx; yÞσz�χðx; yÞηðzÞ ¼ εχðx; yÞηðzÞ: ð7Þ
It can be shown that the quantization of the Hall
conductivity σxy is enforced by the Chern number corre-
sponding to the connection Aj ¼ i

R
dxdyχ�ð∂=∂kjÞχ [35].

Nevertheless, not all the 2D Landau levels give rise to
surface Landau states, as these require the superposition
of zero-energy solutions ηðzÞ ∼ eiwzη̂ with equal η̂ and the
same sign of ImðwÞ. This amounts to counting pairs of
exceptional points with the same pseudospin in the upper
half of the complex plane, which is accomplished by the
index

ν ¼ 1

2πi

X0

n

I
C
dw

1

εnðwÞ
d
dw

εnðwÞ; ð8Þ

where the contour C is stretched in the upper half-plane to
cover all possible singularities, and the prime means that
the sum is carried over the subbands n for which the
expectation value of the pseudospin hσyi keeps the same
sign in all the region inside the contour [35]. The index ν
acts then as a topological invariant for the surface Hall
effect, as long as the analyticity properties in the complex
plane dictate its insensitivity to regular perturbations of the
contour or the integrand in Eq. (8) [36].
It is worthwhile to note that single evanescent solutions

like those given by Eqs. (5) and (6) (valid in the limit of
infinite depth W along the z direction) cannot carry a
current along the x direction, as the current operator is
given by jx ¼ −2m1ðkx − ByÞσz while the evanescent

waves are eigenstates of σy. However, this does not hold
in the case of a slab with finite width W, as the two
evanescent waves attached to opposite faces of the slab start
to hybridize when approaching the boundaries of the lateral
dimension Δy, leading to a chiral current along the vertical
surface, as shown in Fig. 1. This explains the dispersion of
the bands from the zero-energy Landau level in Fig. 2,
which implies a nonvanishing current as hjxi ¼ ∂ε=∂kx.
The N-fold degeneracy of the zero-energy level leads then
to a transverse Hall conductivity σxy ¼ Nðe2=hÞ, where the
number of channels may be as large as N ∼ 30 for B ¼
10 T and parameters m0 ∼ 1 eV, m1 ∼ 1.0 eV nm2.
3D Hall effect.—We consider now the case in which

the magnetic field is parallel to the plane of the
nodal line, taking for definiteness a constant field
pointing in the y direction. The vector potential can be
chosen asA ¼ ðBz; 0; 0Þ, and the Hamiltonian reads in that
gauge

Hk ¼ ðm0 þm1½−ð−i∂x þ BzÞ2 þ ∂2
y þ ∂2

z �Þσz − iv∂zσx:

ð9Þ
In this case, the most interesting effects manifest again

in a slab with finite width W in the z direction. In this
geometry, there is a highly degenerate level at virtually zero
energy which arises from the collapse of a large number of
flat bands corresponding to different values of the momen-
tum ky. This is represented in Fig. 4, where we can see the
band structure for a slab of width W ¼ 60 nm, under a
magnetic field with B ¼ 30 T.
Quite remarkably, the states in the highly degenerate

zero-energy level are localized at parallel 2D slices within
the bulk of the slab. A typical shape of wave function along
the z direction for a state in the zero Landau level can be

FIG. 3. Spectrum of a NLSM (with m0 ¼ 0.2 eV, m1 ¼
0.8 eV nm2, v ¼ 1.0 eV nm, and magnetic field perpendicular
to the nodal ring B ¼ 30 T) for complex momenta kz þ iα (kz
being perpendicular to the nodal ring) showing two branch cuts
connecting pairs of exceptional points along the α axis. The energy
is measured in electron-volts and the momentum in inverse
nanometers.

FIG. 4. Band structure for a slab of NLSM of width W ¼
60 nm (lateral dimension Δy ¼ 60 nm), for parameters
m0 ¼ 0.5 eV, m1 ¼ 0.5 eV nm2, v ¼ 0.5 eV nm, and magnetic
field (parallel to the nodal ring) B ¼ 30 T. The units are the same
as in Fig. 2.
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seen in Fig. 5. The localization of the state in the bulk can
be moved by varying the momentum kx, which shifts the
center of the slice z0 within the slab.
The unconventional character of the quasi-2D states in

the bulk is displayed by the fact that they arise from the
superposition of two waves, both evanescent along z but
with opposite orientations. The possibility of having those
waves can be realized from inspection of the eigenvalue
problem (for kx ¼ ky ¼ 0),

½m0 þm1ð∂2
z − B2z2Þ�σzΨ − iv∂zσxΨ ¼ εΨ: ð10Þ

Equation (10) looks like a Dirac equation for massive
fermions in which the magnetic field provides a confining
potential. Thus, the potential well gives rise to two domain
walls (turning points) along the z direction which are able
to pin the evanescent waves, leading to localized eigen-
states within the gap opened by the mass in the Dirac
spectrum.
We can make contact at this point with the physics of the

evanescent waves and exceptional points of the previous
section. The two evanescent waves that now make up each
quasi-2D localized state have, to a good approximation,
well-defined opposite values of the pseudospin σy. This is
evidenced in Fig. 5 by the change of sign in ReðΨ2Þ when
passing from one evanescent wave to the other. Anyhow,
there is always some interaction between the two evan-
escent waves [37], which accounts for the fact that they
may carry small (and opposite) contributions to the current
density jx ¼ −2m1ðkx þ BzÞσz. These cancel out when
integrating along z, except when the slice of the quasi-2D
state approaches one of the faces of the slab. Then the
evanescent waves get distorted, so that one of the con-
tributions to jx starts to prevail. This explains the fact that
the electronic current is confined to the surface of the
NLSM, taking opposite orientations at opposite faces of
the slab.
The huge degeneracy of the zero Landau level affords

a quantization of the 3D Hall conductivity. This can be

shown by observing that the current density jx is equal to
the derivative ∂Hk=∂kx. Thus, the current of each state
across a section of the slab (for a finite lateral dimension
Δy) is given in terms of the dispersion εðkxÞ by

1

W
1

Δy

Z
dydzΨ†jxΨ ¼ ∂ε

∂kx : ð11Þ

Considering the situation in which the Fermi level is right
above the zero Landau level, we obtain the intensity Ix
along the x direction by integrating over all the filled states
in the bands dispersing from zero energy. We get (reinstat-
ing at this point ℏ in the equations)

Ix ¼
e
ℏ

Z
filled states

dkx
2π

∂ε
∂kx : ð12Þ

The integral in (12) is nothing but the difference between
the respective chemical potentials εþ; ε− at the two opposite
faces of the slab times the degeneracy N of the zero Landau
level. Therefore, we have Ix ¼ Nðe=hÞðεþ − ε−Þ and the
Hall conductance G ¼ Nðe2=hÞ.
It is important to realize that the zero-mode degeneracy

N (observed, for instance, in Fig. 4) scales with the lateral
dimension Δy. The different flat bands collapsed down to
zero energy correspond to different quantized values of the
momentum ky. We add a new degenerate band for each
wave number of the original drumhead that can be
accommodated in the finite lateral dimension, up to a
maximum momentum K̃y reaching the limit of the nodal
ring. The number of channels N is indeed given by
K̃yΔy=2π. Therefore, according to the orientation in
Fig. 1, the 3D Hall conductivity can be written as

σzx ¼
e2

h
ϵzxy

K̃y

2π
: ð13Þ

This result is consistent with the formula obtained by
Halperin for the Hall conductivity in 3D gapped systems
[20]. As in Ref. [20], 2π=K̃y has the meaning of the
wavelength of an oscillation, which in the present context
corresponds to the minimum wavelength of the quantized
waves fitting in the lateral dimension Δy.
Conclusions.—We have shown that, under a strong

magnetic field, a 3D NLSM enters a topological insulating
phase in which the low-energy states in the bulk do not
contribute to the conductivity, and all the electronic trans-
port takes place at the surface of the material.
A distinctive feature of the surface and 3D Hall effects in

NLSMs is that they are based on the existence of evan-
escent states with a well-defined pseudospin. The pseudo-
spin operator realizes the particle-hole transformation in the
electron system, which explains that such evanescent states
correspond to exceptional points—that is, branch points

FIG. 5. Plot of the wave function along the direction
perpendicular to the nodal ring (zoom view) showing the
imaginary part of the first component [as ReðΨ1Þ ¼ 0], and
the real part of the second component [as ImðΨ2Þ ¼ 0] of a state
with kx ¼ ky ¼ 0 in the zero Landau level of a NLSM with
m0 ¼ 2.0 eV, m1 ¼ 1.5 eV nm2, v ¼ 0.5 eV nm, and magnetic
field (parallel to the nodal ring) B ¼ 30 T. The figure also shows
the pseudospin σ ¼ hσyi of the two evanescent waves making up
the state.
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where two states with opposite energy coalesce in the
spectrum of the NLSM.
In general, we may expect that a surface Hall effect may

survive when the NLSM is under perturbations with a
strength smaller than the gap between the zero-energy
Landau level and the next higher bands. We have seen,
however, that when the perturbations preserve the particle-
hole symmetry, the complex structure tied to the excep-
tional points lends a much larger stability to the zero-energy
flat bands in the spectrum [35]. In these conditions, the Hall
conductivity can be expressed in terms of the integral of a
suitable Berry connection, in the same fashion as in the 2D
Hall effect. As a counterpart, we have also shown that the
complex structure of the spectrum (for complex values of
the momentum) allows us to express the number of zero-
energy flat bands in terms of a different topological
invariant, counting essentially the number of exceptional
points and ensuring its topological character from the
impossibility of removing such branch points by smooth
perturbations of the spectrum.
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