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We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed
under circularly polarized electromagnetic radiation. We find that the hybridization between inverted
Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex
values of the momentum. This corresponds to the appearance of midgap surface states in the form of
evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon
reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional
to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry
angular current, leading to an angular modulation of their charge that rotates with the same frequency of the
radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface.
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Introduction.—In recent years we have witnessed the
discovery of several types of materials characterized by
having electron quasiparticles with linear momentum
dispersion. Graphene was certainly the first of those
materials [1], but afterwards we learned about the topo-
logical insulators [2,3], to end up more recently with the
investigation of 3D semimetals whose low-energy excita-
tions behave as Dirac [4–6] or Weyl fermions [7,8].
These materials have attracted a lot of attention for their

potential to develop a new type of electronic transport
without dissipation. The key idea is that of topological
protection, which has its precedent in the edge states of the
quantum Hall effect. The surface states in the novel
materials may also have a well-defined chirality, protecting
them against backscattering. Both properties are funda-
mental for revolutionary applications in spintronics and
fault-tolerant quantum computation [2,3].
In this search, the interaction between light and matter

can play an important role, since the electromagnetic
radiation may be a versatile resource to change and control
topological states of matter. In 2D semimetals, it can open a
gap in the bulk, leading to chiral currents at the boundary of
the electron system [9–18], as observed on the surface of
3D topological insulators [19]. The effect of the radiation
has also been investigated in the case of 3D Dirac and Weyl
semimetals, focusing on bulk properties [20–22].
In this Letter, we investigate the development of novel

surface states when a 3D Dirac or Weyl semimetal is placed
under circularly polarized electromagnetic radiation. We
will show that such states are intimately related to avoided
crossings at the gap that opens up from the hybridization of
inverted Floquet bands, as represented in Fig. 1. The gap
closes at so-called exceptional points (EPs) [23,24],
which are celebrated in the context of non-Hermitian
Hamiltonians and appear here for complex values of the

momentum describing the evanescence into the 3D semi-
metal. The stability of the novel surface states is then
guaranteed by a new mechanism of topological protection,
relying on the fact that each EP comes as a branch point
in the spectrum which cannot be removed by small
perturbations.
The genuine feature of the novel surface states is that

they all carry a significant angular current, with the same
chirality of the photon polarization and the frequency of the
radiation. Such states may prove especially useful in the
current drive towards increasing the frequency limits of
electronic devices [25].
Model and Floquet theory.—A low-energy Hamiltonian

for a 3D Dirac semimetal around the Brillouin zone center,
considering terms up to quadratic order in the quasimo-
mentum k, can be written as [26,27]

FIG. 1. Left: Schematic representation of the first Floquet
bands with quasienergy ϵ and ϵ� ℏΩ (Ω being the radiation
frequency) for a model of 3D semimetal with two nodes along the
momentum axis kz (red color denotes positive energy while light
blue denotes negative energy, the direction transverse to kz
represents additional components of the momentum). Right:
Geometry of 3D semimetal with the surface exposed to the
radiation where the evanescent states appear.
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H ¼ ϵ0ðkÞIþMðkÞσz þ ℏvðζkxσx − kyσyÞ; ð1Þ

ϵ0ðkÞ ¼ c0 þ c1k2z þ c2ðk2x þ k2yÞ; ð2Þ

MðkÞ ¼ m0 −m1k2z −m2ðk2x þ k2yÞ; ð3Þ

where I is the 2 × 2 identity matrix, σi; i ¼ x, y, z are the
Pauli matrices, and ζ ¼ �1 sets the chirality in the Dirac
cones. The solution of the eigenvalue problem is

E� ¼ ϵ0ðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðkÞ2 þ ℏ2v2ðk2x þ k2yÞ

q
: ð4Þ

With the parameters m0; m1; m2 < 0 to reproduce band
inversion, the spectrum shows Dirac crossings at kc ¼
ð0; 0;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0=m1

p Þ. Ignoring the part proportional to the
unit matrix ϵ0ðkÞ, we can expand the Hamiltonian linearly
around each Dirac point to obtain a model for 3D massless
Dirac fermions with anisotropic linear dispersion

EðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2ðk2x þ k2yÞ þ 4m0m1ðkz − kc;zÞ2

q
.

Consider illumination by circularly polarized off-
resonant light of frequency Ω and field amplitude F . In
the case of polarization in the x-y plane, light produces the
vector potential in the dipolar approximation AðtÞ ¼
Aðη sinΩt; cosΩt; 0Þ, where η ¼ �1 for right and left
circularly polarized beams, respectively, and A ¼ F=Ω.
We make the Peierls substitution k → kþAðtÞ and
use Floquet theory in order to compute the band structure
in the presence of the radiation field [28]. Solutions
of the time-dependent Schrödinger equation in the case
of time-periodic Hamiltonians have the form jΨðtÞi ¼
e−iϵt=ℏjΦðtÞi, with a conserved quantity, the quasienergy
ϵ, playing a similar role to the energy in the time-
independent Schödinger equation. The Floquet states
jΦðtÞi are periodic in time with the same period as the
Hamiltonian and they can be developed in Fourier
series, jΦðtÞi ¼ P

me
−imΩtjumα i. This transforms the time-

dependent Schrödinger equation into

X
n

Hmnjunαi ¼ ðϵα þmℏΩÞjumα i; ð5Þ

where the Floquet Hamiltonian matrix elements are given
by Hmn ¼ ð1=TÞ R T

0 dtHðtÞeiðm−nÞΩt, T ¼ 2π=Ω being the
period of the time-dependent Hamiltonian [28].
As a relevant example, we perform calculations in an

infinite wire in the z direction with a finite square section in
the x-y plane. Using the Floquet formalism, we calculate
the band structure as a function of kz discretizing the model
Hamiltonian with a standard tight-binding regularization
including the Floquet subbands. Results with parameters of
the model in the topological Dirac semimetal regime are
shown in Fig. 2, where we compare the energy of the bulk
bands (left) with the quasienergy of the bands in the wire
(right) as a function of kz. The structure of the bands

wrapping up in the Floquet-Brillouin zone is very apparent.
In the middle of the Floquet-Brillouin zone at ϵ ¼ 0, a gap
opens between states with Floquet modes n ¼ −1 (red) and
n ¼ 1 (blue), the hybridization being a second order effect
leading to a quite small gap, proportional to A2. The much
bigger gap (proportional to A) between modes n ¼ 0
(green) and n ¼ 1 is in one of the edges of the Floquet-
Brillouin zone at ϵ ¼ ℏΩ=2, with a mirror structure (not
shown) at ϵ ¼ −ℏΩ=2 between modes n ¼ 0 and n ¼ −1.
In order to explore the possibility of evanescent states in

the z direction, we solve the Schrödinger equation in the
same geometry but including a finite imaginary part in kz.
The Hamiltonian becomes then non-Hermitian and the
eigenenergies acquire a finite imaginary part. These are
obviously nonphysical solutions of the problem. However,
non-Hermitian Hamiltonians may have eigenenergies that
are strictly real, in the form of EPs [23,24]. These
correspond to physical evanescent solutions with the
imaginary part of the momentum giving the decay length
of a wave in a semi-infinite geometry. The black circles in
Fig. 2 mark the presence of the evanescent states in the gaps
induced by the radiation. Not all of the avoided crossings
present evanescent states, that depends on the properties of
the actual bands involved. However, the number of avoided
crossings is proportional to A and to the area of the section
of the wire. This may imply, in general, a large degeneracy
of evanescent states, whose origin is clarified in the
continuum limit discussed in what follows.
Quantization and localization of zero-mode surface

states.—In order to unveil the properties of the novel
surface states, we focus now on the low-energy physics
around any of the nodes of the Hamiltonian Eq. (1), taking,
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FIG. 2. Band structure for model parameters c0 ¼ c1 ¼ c2 ¼
0.0, m0 ¼ −0.5 eV, m1 ¼ −0.605 eVÅ2, m2 ¼ −1.0 eVÅ2,
ℏv ¼ 1.1 eVÅ, ℏΩ ¼ 0.5 eV, A ¼ 0.05 Å−1, in the bulk
(left-hand panel) and for a wire of section S ¼ 150 × 150Å2

in the x-y plane (right-hand panel). The position of the Dirac cone
at zero field is kc;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m1

p ¼ 0.909 Å−1. The color repre-
sents the predominant Floquet mode of the particular state in a
RGB coding (RGB standing for red-green-blue) where the
intensity of each mode is mapped to the intensity of each
fundamental color; n ¼ −1, 0, 1 correspond to red, green, and
blue, respectively. The position of the evanescent waves obtained
as strictly real solutions of the eigenvalue problem after including
an imaginary part in kz of ImðkzÞ ¼ 0.01 Å−1 is shown with
black circles with a dot. A few high-energy bands with n ¼ −1
index not affecting the avoided crossing structures have been
erased for clarity of presentation.
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moreover, the projection for a given chirality ζ. This
amounts to linearizing MðkÞ about the node at k ¼ kc,
which leads in real space to the Hamiltonian for a single
Weyl quasiparticle:

HW ¼ −iℏðvσx∂x þ vσy∂y þ vzσz∂zÞ
þ ℏvA½σx cosðΩtÞ þ σy sinðΩtÞ�; ð6Þ

with a velocity vz ≠ v along the z axis [29].
HW can be translated into a time-independent

Hamiltonian after applying the unitary transformation
U ¼ e−iJzΩt=ℏ, with the projection of the total angular
momentum Jz ¼ −iℏx∂y þ iℏy∂x þ ℏσz=2 [30]. This
leads to the transformed Hamiltonian

~HW ¼ U†HWU − iℏU†∂tU

¼ −iℏðvσx∂x þ vσy∂y þ vzσz∂zÞ −ΩJz þ ℏvAσx:

ð7Þ

Each eigenvector χ of Eq. (7) corresponds then to a solution
ΨðtÞ of the original time-dependent Schrödinger equation,
given by ΨðtÞ ¼ e−iJzΩt=ℏe−iεt=ℏχ [ε being the eigenvalue
of Eq. (7)]. This shows that the eigenvalues jz of the
projection Jz can be used in this approach to label the
different sidebands arising from the irradiation.
After applying the gauge transformation P ¼

expð−iAxÞ to Eq. (7), the Hamiltonian becomes [in polar
coordinates r, θ and with σ� ¼ ðσx � iσyÞ=2]

~H0
W ¼ −iℏv

X
s¼�

e−siθ
�
∂r − si

1

r
∂θ

�
σs

− iℏvzσz∂z − ℏΩ
�
−i∂θ þ

σz
2

�
− ℏΩAr sinðθÞ: ð8Þ

The last term in Eq. (8) is responsible for the coupling
between states with different angular momenta jz. Then,
the avoided crossing of the bands with jz ¼ �ℏ=2 gives
rise to a gap around zero energy in the spectrum of Eq. (8).
This point actually corresponds to a quasienergy ϵ ¼ ℏΩ=2
in the conventional Floquet approach, sinceU has the effect
of shifting the energy of the sidebands in the present
approach by half-integer multiples of ℏΩ.
The development of the gap can be captured (for not too

large amplitude A) by solving in the space spanned by a
linear combination of spinors with projection of the total
angular momentum jz ¼ �ℏ=2,

χ ¼
�

ϕ1ðrÞ
eiθϕ2ðrÞ

�
eikzz þ

�
e−iθϕ3ðrÞ
ϕ4ðrÞ

�
eikzz: ð9Þ

We have considered specifically a cylindrical geometry
with the section at z ¼ 0 exposed to the radiation, as
represented in Fig. 1 [31]. A typical shape of the gap is

shown in Fig. 3(a), where we see that it has several
oscillations before recovering the linear dispersion of the
original cones beyond a certain kz. This is indeed the
generic behavior, with an increasing number of oscillations
as the radius R of the cylinder grows.
The origin of the oscillations in the gap is clarified

by noting that they arise from the existence of EPs
in the spectrum of the Hamiltonian Eq. (8), corresponding
to values of kz inside the complex plane where the gap
closes. Around each oscillation of the gap, the lowest
eigenvalue ε behaves as a function of complex kz as
ε ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki − kz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄i − kz

p
, with EPs at complex conjugate

momenta ki; k̄i [28]. Evanescent states with ImðεÞ ¼ 0
exist then in the segment jImðkzÞj ≤ jImðkiÞj, for each pair
ki; k̄i. We have represented, for instance, in Fig. 3(b) the
behavior of the imaginary part of the lowest eigenvalue,
when ImðkzÞ ≠ 0, as a function of the real part of kz. We
observe the recurrent development of complex momenta at
which the eigenvalue becomes purely real, leading to a set
of evanescent eigenstates in perfect correspondence with
the minima of the gap in Fig. 3(a).
We find then that the evanescent states are preserved by a

mechanism of topological protection, as the branch cuts
cannot be undone in the complex plane unless the branch
points coalesce in pairs. It can be seen that the imaginary
part of the EPs has a very smooth dependence on the
frequency Ω, while it grows linearly with the amplitude A
[32]. The number of zero-mode evanescent states may be
actually characterized from the number of branch points
that the lowest band εðkzÞ has in the complex plane.
It can be checked that the number of EPs increases as the

radius R grows, leading to a definite pattern of quantization
in the surface of our geometry. It can be seen that the order
of each zero in the plot of Fig. 3(b) (from right to left) also
gives the extent of the localization that the corresponding
evanescent wave has in the radial direction, as illustrated in
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FIG. 3. (a) Plot of the gap of the Hamiltonian Eq. (8) (in eV) as
a function of real kz (measured in units of the inverse of the
typical microscopic length scale a in the material) for
ℏv=a ¼ 1.1 eV, ℏΩ ¼ 0.5 eV, A ¼ 0.005 a−1, and radius R ¼
200a of the cylindrical geometry considered in the text. (b) Imagi-
nary part of the lowest eigenvalue of the Hamiltonian Eq. (8) (in
eV) as a function of ReðkzÞ, for complex momenta with ImðkzÞ ¼
0.08 a−1 and the same parameters as in (a).

PRL 116, 156803 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 APRIL 2016

156803-3



Fig. 4. The peak in the probability distribution shifts to
lower values of r as ReðkzÞ decreases, eventually reaching
the innermost region of the surface. The number of
evanescent states, besides growing linearly with the fre-
quency Ω and the amplitude A, actually becomes propor-
tional to the area of the irradiated surface, at a rate of
roughly one state per ð100aÞ2 (for ℏΩ ¼ 0.1 eV,
A ¼ 0.01 a−1, a being a typical microscopic length scale
in the material).
Furthermore, the midgap evanescent states evolve in

time with a rotation of their charge along the angular
variable θ. This can be shown by computing the angular
component jθ of the probability current for the Hamiltonian
Eq. (6). This current has a static contribution, jθstatic ¼
−iðv=rÞðϕ�

1ϕ2 þ ϕ�
3ϕ4Þ þ H:c:, which leads to a very small

intensity when integrated over the radial direction, as a
consequence of the tendency of the two contributions from
jz ¼ �ℏ=2 states to cancel each other [28]. For ℏΩ ¼
0.5 eV and A ¼ 0.005 a−1, we get, for instance, values of
the intensity

R
dr rjθstatic between ∼10−5v=a and ∼10−4v=a,

when computing for evanescent states from the outermost
to the innermost region of the surface. However, there is
also a non-negligible time-dependent contribution to jθ

[28], given by

jθΩ ¼ −iðv=rÞðϕ�
1ϕ4e−iðθ−ΩtÞ þ ϕ�

3ϕ2eiðθ−ΩtÞÞ þ H:c:; ð10Þ

which has a periodic dependence on θ −Ωt, as shown in
Fig. 4 [33]. The intensity corresponding to jθΩ has maxima
(in the angular variable) which turn out to be, in general,
about 2 orders of magnitude above the intensity obtained
from jθstatic, for every evanescent state [28].
When introduced in the continuity equation, the form of

jθΩ implies that the charge of each state must have a periodic
modulation in the angular variable, and that it must rotate

with frequency Ω along the concentric rings where each
evanescent state is confined [28]. From a practical point of
view, this leads to the formation of rotating dipoles on the
surface of the system, whose movement can be controlled
by tuning the parameters of the radiation.
While we have referred here to the hybridization of states

with jz ¼ �ℏ=2, the coupling of sidebands with higher
values of Jz results in surface states with similar properties
of localization and time evolution [28]. It can be seen, in
particular, that the hybridization of sidebands with values
of jz differing by 2ℏ leads also to evanescent states, which
correspond in that case to the EPs found at ϵ ¼ 0 in the
preceding section.
Conclusion.—An important practical consideration in

this study is that the infrared radiation may penetrate
sufficiently deep into the 3D semimetals, given the limited
screening in these materials. The penetration length l can be
estimated as the inverse of the absorption coefficient α,
which is expressed in terms of the dielectric function ϵðΩÞ
as α ¼ 2Ω Im

ffiffiffiffiffiffiffiffiffiffi
ϵðΩÞp

=c. We find, for instance, that l ∼
1 μm in the near infrared (Ω ∼ 100 THz) [28], which is a
large enough distance to afford the development of the
evanescent states.
The magnitude of the component jθΩ of the current offers

good perspectives to observe experimentally the novel
surface states. In our cylindrical geometry, the intensity
of the current across the radial direction, I ¼ e

R
dr rjθΩ,

gets maxima (in the angular variable) that range between
∼10−1 and ∼1 μA, for individual states taken from the
outermost to the innermost region in the top surface. The
total intensity could be enhanced by a large additional
factor, in a device able to measure the contribution of a
significant part of the surface states.
A suitable experimental setup (i.e., two electrodes on top

of the surface of the semimetal) may be able to convert the
rotation of the charge in the surface states into an electrical
current, if the device is made to work as a rectenna. This
may benefit from recent developments that make it possible
to rectify currents oscillating even at the frequency of
visible light [34]. In our case, it may greatly help the fact
that the rotation of all the surface states is synchronized
with that of the radiation fields, making easier the obser-
vation of the macroscopic chiral current that may develop at
the irradiated surface.
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