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Linear resistivity at low temperatures is a prominent feature of high-Tc superconductors which has also
been found recently in twisted bilayer graphene. We show that due to an extended van Hove singularity
(VHS), the T-linear resistivity can be obtained from a microscopic tight-binding model for filling factors
close to the VHS. The linear behavior is shown to be related to the linear energy dependence of the electron
quasiparticle decay rate which implies the low-energy logarithmic attenuation of the quasiparticle weight.
These are distinctive features of a marginal Fermi liquid, which we also see reflected in the respective low-
temperature logarithmic corrections of the heat capacity and the thermal conductivity, leading to the
consequent violation of the Wiedemann-Franz law. We also show that there is a crossover at T ∼ 6 K from
the marginal Fermi liquid regime to a regime dominated by excitations on the Dirac cone right above the
VHS that also yields a linear resistivity albeit with smaller slope, in agreement with experimental
observations.
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Introduction.—The discovery of a correlated insulating
[1] and superconducting [2] state in magic angle twisted
bilayer graphene (TBG) has stimulated great interest, both
from the theoretical [3–27] as well as from the experimental
side [28–34]. One striking and astonishing result of the
initial experiments was the similarity of the phase diagram to
the one of high-Tc superconductors [35–38]. This analogy
has further been manifested by the observation of a strange
metal regime with its linear temperature dependence of the
resistivity [39,40].
The nature of the strange metal phase in TBG is highly

controversial. It is frequently assumed that electron-phonon
interactions could be responsible for the anomalous behav-
ior of the resistivity, but at the same time acknowledging
that phonons cannot account for the T-linear dependence
down to the lowest temperatures reached in the experiments
(∼0.5 K), in particular below the Debye frequency scale (in
the case of optical phonons) or below the Bloch-Grüneisen
temperature (in the case of acoustic phonons). The proposal
derived in this Letter solves this puzzle, presenting a
consistent explanation that is purely based on electron-
electron interaction.
Our key observation is that the lowest-energy bands of

TBG near the magic angle display two distinct features that
dominate the transport properties. These are the Dirac
nodes at the charge neutrality point and, on the other hand,
a set of extended saddle points which, according to
experimental [41,42] and also theoretical [43,44] evidence,
are close to the Fermi level at half-filling of the two highest
(lowest) valence (conduction) bands. The extended saddle
points are characterized by a dispersion with very small
curvature along the ΓK lines that manifests in the straight

segments of the Fermi line for the second highest valence
band (VB) represented in Fig. 1(b). We have argued that
this feature could be at the origin of the observed super-
conductivity of TBG, relying on a Kohn-Luttinger mecha-
nism where the strongly anisotropic screening leads to an
attractive interaction between Cooper pairs around the
Fermi line [45].
In this Letter, we show that the decay of the low-energy

quasiparticles in the region of flat dispersion [typically

FIG. 1. Energy contour maps (with light colors representing
higher energies) of the first and the second highest valence band
in the moiré Brillouin zone of a twisted graphene bilayer with
twist angle θ28 ≈ 1.16°, showing the Fermi lines for filling levels
shifted −0.2 (blue lines) and −1.5 meV (red lines) below the level
of the saddle points placed along the ΓK lines.
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within 1 meV around the extended van Hove singularity
(VHS)] as well as of those with higher energy (already
located in the Dirac cone below the K point) can account
for a T-linear dependence of the resistivity. The origin of
the T-linear behavior is, however, different in the two
regimes, forcing the appearance of a crossover regime, i.e.,
a change of slope of the resistivity around a crossover
temperature T. This change in the slope is, indeed,
observed in the measurements reported in Ref. [39].
Furthermore, the T-linear resistivity observed in the low-

temperature regimebelow∼5 Kmust be just one of themany
facets revealing the deviation of TBG from the conventional
Fermi liquid picture. The reason for such an anomalous
behavior lies in the linear growthwith energy of particle-hole
excitations across the straight segments of the blue Fermi line
shown in Fig. 1(b). This kind of linear scaling was actually
the main assumption in the original proposal of the marginal
Fermi liquid paradigm [46], developed phenomenologically
to describe the normal phase of the high-Tc superconductors.
Our derivation, therefore, can be seen as a concrete realiza-
tion of the paradigm, which should manifest itself in other
observable features of TBG such as the linear energy scaling
of the quasiparticle decay rate or the anomalous temperature
dependenceof the heat capacity and the thermal conductivity.
Model.—To model TBG, we will use the commensurable

tight-binding model parametrized by the integer i corre-
sponding to the twist angle with cos θi ¼ ½ð3i2 þ 3iþ 0.5Þ=
ð3i2 þ 3iþ 1Þ� [47,48]. The hopping parameters are
taken from Refs. [49,50] such that the nearest-neighbor
intralayer hopping is set to t ¼ −2.7 eV and the vertical
interlayer hopping to t⊥ ¼ 0.48 eV. For a recent review on
bilayer systems, see Ref. [51] and also the Supplemental
Material [52].
We note that the anomalous transport behavior arises

from the peculiar features of the second highest VB of
TBG. For small twist angle θ ≈ 1°, the first and second
highest VBs have coincident VHS at the same energy, but
with very different dispersion in the two cases. This
dispersion takes the form of a conventional saddle point
in the first VB, while that in the second VB has a more
distorted shape, with a much smaller curvature along the
ΓK line than in the orthogonal direction.
In Fig. 1, the energy contour maps of the two highest

VBs are shown for a bilayer with twist angle θ28 ≈ 1.16°.
Also shown are the Fermi lines for two energies Δμ relative
to the VHS. In the second highest VB, they consist of two
patches with three lobes each. Notable are the straight
segments with quasi-one-dimensional dispersion in the
second highest VB for Δμ ¼ −0.2 meV, which are a
reflection of the extended VHS.
Let us also stress that the energy contour maps of

Fig. 1 with their characteristic Fermi lines around the
VHS appear to be rather universal, i.e., independent of the
specific details of the underlying microscopic model that
may include relaxation effects or slightly different hopping

parameters. Remarkably, the same extended VHS are also
found in the continuum model [54–57]; see Ref. [45].
Resistivity.—We compute the resistivity relying on the

semiclassical formalism of the Boltzmann equation. In this
approximation and assuming an on-site Hubbard interac-
tion U, the resistivity ρn in the direction of the unit vector n
can be expressed as an average over momenta k [58]

ρn ¼ ρ0

1
T

R
d2k
ð2πÞ2

nFðεkÞ
τtrðkÞ

ðR d2k
ð2πÞ2

∂nFðεkÞ∂εk ðvk · nÞ2Þ2
; ð1Þ

where ρ0 ¼ h=e2 (restoring for a moment Planck’s con-
stant), nFðεkÞ is the Fermi-Dirac distribution function at
energy εk, the Fermi velocity is vk ¼ ∇εk, and 1=τtr stands
for the transport decay rate. At this point, it is instructive to
discern the different contributions from the decay of
quasiparticles in the ith VB to the jth VB, which lead
to partial decay rates

1

τðijÞtr ðkÞ
¼ U2

Z
d2k0

ð2πÞ2
Z

εðiÞk

0

dωjhi; kjj; k0ij2

× ½1 − nFðεðjÞk0 Þ�δðεðiÞk − εðjÞk0 − ωÞImχðijÞtr ðk; k0;ωÞ;
ð2Þ

with the imaginary part of the transport susceptibility

ImχðijÞtr ðk; k0;ωÞ

¼
Z

d2p
ð2πÞ2 jhl;pjl

0;pþ k− k0ij2nFðεðlÞp Þ½1− nFðεðl
0Þ

pþk−k0 Þ�

× ½ðvðiÞk þ vðlÞp − vðjÞk0 − vðl
0Þ

pþk−k0 Þ · n�
2
δðεðl0Þpþk−k0 − εðlÞp −ωÞ:

ð3Þ

Above, we have introduced the eigenvectors ji; ki corre-
sponding to states in the ith highest VB with eigenenergies

εðiÞk , and the sum over l, l0 is implied [59]. The Hubbard
coupling U is the projected on-site interaction onto the
second highest VB of the moiré lattice, which we set to
U=2π ¼ 3 meV a2M, aM being the lattice constant of the
superlattice.
The behavior of the resistivity and the transport scatter-

ing rate depends on the shift Δμ of the Fermi level with
respect to the extended saddle points shown in Fig. 1. When
the Fermi level is close to the VHS (with a deviation Δμ
within ≲0.5 meV), the low-energy electron quasiparticles
have a dominant decay channel into particle-hole excita-
tions across the straight segments of the blue Fermi line
shown in Fig. 1(b). These excitations have an approximate
linear energy-momentum dispersion, realizing then one of
the basic assumptions of the marginal Fermi liquid para-
digm. We stress that such a decay channel acts efficiently
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for the intraband scattering of quasiparticles in both the first
and the second highest VB. Consequently, the temperature

dependence of 1=τð11Þtr and 1=τð22Þtr for these low-energy
quasiparticles (with εk within ∼0.5 meV around the VHS)
is found to be linear in the two bands, as can be seen in
Fig. 2. Moreover, interband scattering is shown to provide
only a subdominant, softly quadratic correction given by

1=τð12Þtr , represented also in Fig. 2.
Beyond a certain temperature, however, the quasipar-

ticles are excited at higher energies away from the VHS,
lying on the Dirac cone which is right above the extended
saddle points. These quasiparticles can decay into particle-
hole excitations not attached to the straight segments of the
Fermi line, providing a conventional scattering mechanism
that is reflected in the departure from T-linear behavior
above T ∼ 6 K in the plot of Fig. 2.
We, therefore, see that the extended saddle-point

regime leads to a crossover in the temperature dependence
of the transport decay rate, whenever the shift Δμ of the
Fermi level is sufficiently small. On the other hand, if the
Fermi level significantly departs from the VHS (with
jΔμj≳ 1 meV) then the Fermi line recovers a more regular
(two-dimensional) shape, as shown by the red lines in
Fig. 1, and the scattering of electron quasiparticles follows
a conventional trend. In this case, the temperature
dependence of the transport decay rate has a quadratic
behavior starting at low T, as shown in Fig. 2.
From the results for the transport decay rate, we obtain

the resistivity by applying Eq. (1). At low temperatures,
we may assume that only quasiparticles in the energy
range of T contribute, so that the resistivity can be
computed as an average over the branches of the Fermi
line in the two highest VBs. We may discern again
different contributions ρij from the intraband and inter-

band scattering processes accounted for by 1=τðijÞtr .
Decomposing the momentum k into a longitudinal kk
and a transverse k⊥ component, we have

ρij ∼ ρ0
1

T

I
Ci

dkk

Z
dεðiÞk
vðiÞk

nFðεðiÞk Þ
τðijÞtr ðkÞ

; ð4Þ

Ci being the Fermi line of the corresponding VB.
In Fig. 3, one can see that the crossover and the T-linear

behavior at low temperature of 1=τð11Þtr and 1=τð22Þtr are
translated into a similar behavior of the resistivities ρ11 and
ρ22. Interband scattering is found to provide only a
subdominant, softly quadratic correction ρ12. Above the
crossover temperature, however, Eq. (4) introduces an
additional T dependence, due to the fact that the quasi-
particles decaying from the Dirac cone have a reduction of
phase space as the energy increases towards the Dirac node
at theK point. The 1=T factor in Eq. (4) is thus not canceled
and the temperature dependence of the resistivity becomes
approximately linear above the crossover temperature, as
shown in Fig. 3.
We note that the magnitude of the resistivity ρ11 turns out

to be larger than the one originating from the second
highest VB. This is a consequence of the fact that the
effective bandwidth (for momenta close to the Fermi line) is
larger in this latter band. The electronic transport will thus
be short circuited through this second highest VB and it is
this band that will dictate the dominant behavior of the
resistivity.
As was the case for the transport decay rate, the behavior

of the resistivity crucially depends on the shift of the Fermi
level with respect to the VHS. This is evidenced in the
quadratic behavior of the red curve in Fig. 3 that refers to
Δμ ¼ −1.5 meV. Nevertheless, for Δμ ¼ −0.2 meV, the
linear T dependence of the resistivity is quite clear,
although with different slope above and below a crossover
temperature of the order of ∼6 K. Very suggestively, a
change in the slope of the resistivity has also been seen in
the experimental observations around half filling of the
moiré unit cell, displaying a larger slope of the linear T
dependence below a crossover temperature that is slightly
above 5 K in the measurements reported in Ref. [39].
For more details, see the Supplemental Material [52].
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FIG. 2. Plot of the temperature dependence of the values
averaged over the Fermi line (and weighted with the inverse
of the square of the Fermi velocity to get dimensions of energy) of

1=τð11Þtr (dashed line), 1=τð22Þtr (solid line), and 1=τð12Þtr (dotted line),
when the Fermi level is 0.2 (blue curves) and 1.5 meV (red curve,
scaled by a factor of 0.4) below the VHS.
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FIG. 3. Plot of the temperature dependence of ρ11 (dashed line,
scaled by a factor of 0.2), ρ22 (solid line), and ρ12 (dotted line), for
a shift of the Fermi level Δμ ¼ −0.2 (blue curves) and −1.5 meV
(red curve, scaled by a factor of 0.5) with respect to the level of
the VHS.
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Quasiparticle properties.—The linear low-temperature
dependence of the transport decay rate can be related to the
low-energy behavior of the electron self-energy Σðk;ωÞ.
When analyzing this quantity, it is convenient to discern the
different contributions to its imaginary part from the decay
of quasiparticles in the ith VB to the jth VB. These can be
computed in terms of the conventional electron-hole
susceptibility χðq;ωÞ as

ImΣðijÞðk;ωÞ ¼ −U2

Z
d2p
ð2πÞ2

Z
∞

−∞
dωpjhi;kjj;pij2

× sgnðωpÞδðωp − εðjÞp ÞImχðk− p;ω−ωpÞ:
ð5Þ

The real part of the self-energy can be obtained by making
use of the Kramers-Kronig relation, which in this case takes
the form

ReΣðk;ωÞ ¼ 2ω

π

Z
∞

0

dΩ
ImΣðk;ΩÞ
Ω2 − ω2

: ð6Þ

When the Fermi level is close to the VHS, the imaginary
part of Σð11Þ and Σð22Þ computed from Eq. (5) has a linear
dependence on the frequency ω which is similar to the low-

temperature dependence of 1=τð11Þtr and 1=τð22Þtr , as can be
seen in Fig. 4(a). As shown in the same figure, the effect of
interband scattering is reflected in a small correction from
Σð12Þ at low frequencies. Consequently, the dependence of
the real part of the self-energy on ω displays a significant
deviation from linear behavior, with a logarithmic correc-
tion which is another evidence of the departure from Fermi
liquid behavior. This is shown in Fig. 4(b), which repre-
sents the average over the Fermi line of the real part of the
different contributions ΣðijÞðk;ωÞ=ω when the Fermi level
is shifted by Δμ ¼ −0.2 meV with respect to the VHS.
We observe that the real part of the dominant intraband

contributions to the self-energy behaves as Σðk;ωÞ ∼
ω logðωÞ at low frequencies, which implies that the electron

quasiparticles are progressively attenuated when approach-
ing the Fermi level. The dressed electron propagator
becomes

Gðk;ωÞ ¼ 1

ω − εk − Σðk;ωÞ ∼
Δ

ω − εk þ iγω
ð7Þ

after rewriting the self-energy corrections in terms of the
quasiparticle weight Δ and the imaginary shift iγω of the
quasiparticle pole. The quasiparticle weight is suppressed
following the low-energy scaling Δ ∼ 1=j logðωÞj, which is
the hallmark of the marginal Fermi liquid behavior [46,60].
For more details, see the Supplemental Material [52].
Heat capacity and thermal conductivity.—The anoma-

lous behavior of the electron quasiparticles has also a
significant impact on the temperature dependence of
observables like the heat capacity. This is obtained from
the entropy S, which can be expressed as an integral along
the Fermi line by decomposing again the momentum k into
longitudinal kk and transverse k⊥ components [52,61]:

S
A
≈

1

2π2
1

T

I
dkk
vk

Z
∞

−∞
dωω

∂nFðωÞ
∂ω ½ω − ReΣðk;ωÞ�; ð8Þ

A being the area of the system. Then, by absorbing the
temperature T into a dimensionless variable ω=T in the
integrand of Eq. (8), we see that the anomalous scaling of
the electron self-energy translates into the dominant scaling
behavior S ∼ Tj logðTÞj.
The heat capacity C is obtained by taking the derivative

of S with respect to T and it inherits, therefore, the
logarithmic correction that we find in the entropy:

C ¼ T
∂
∂T

S
A
∼ Tj logðTÞj: ð9Þ

We see therefore that the logarithmic correction to the heat
capacity holds in the same range of anomalous behavior of
the self-energy plotted in Fig. 4, which corresponds in
temperature to the range T ≲ 10 K.
The logarithmic correction of the heat capacity has also a

direct translation into the temperature dependence of the
thermal conductivity κ. This quantity is related to the heat
capacity through the thermal diffusivity α according to the
formula κ ¼ αC. The thermal diffusivity is in turn propor-
tional to the mean free path of the energy carriers [62].
When the Fermi level is close to the VHS, we can apply the
linear low-temperature dependence we have found in the
transport scattering rate to estimate the mean free path [46].
This implies that

κðTÞ ¼ αC ∼ j logðTÞj: ð10Þ

This anomalous scaling should be observable down to the
temperature scale at which the transport starts to be
dominated by the scattering from disorder (impurities or
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FIG. 4. Plot of the frequency dependence of the real and the
imaginary part of the values averaged over the Fermi line of Σð11Þ

(dashed line), Σð22Þ (solid line), and Σð12Þ (dotted line), for a shift
of the Fermi level Δμ ¼ −0.2 meV below the VHS.
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lattice defects) in the twisted bilayer. Above that scale, the
ratio between the thermal conductivity and the electrical
conductivity should be also affected by the logarithmic
correction from Eq. (10), thus leading to a modification of
the Wiedemann-Franz law [46].
Long-range interaction.—So far, we have considered the

case of a strongly screened Hubbard interaction that can be
interpreted as some effective parameterU that also includes
the dielectric constant of the substrate. Within the con-
tinuum model [54] we have further investigated the
relaxation time for long-range interaction including screen-
ing effects [63] that come from the top and back gate as
well as from internal self-screening. Interestingly, apart
from the linear vs quadratic behavior as a function of the
chemical potential relative to the VHS, we obtain relaxation
times comparable to the Planckian limit for gate distances
D ¼ 15 nm; see Fig. 4 of the Supplemental Material [52].
Within the same framework, we have discussed the influence
of the relaxation time to the quasilocalized plasmonic modes
[64], which also leads to a T-linear behavior proportional to
the density of states, see Supplemental Material [52].
Summary.—Relying on a tight-binding approach, we

have been able to obtain a linear temperature dependence of
the resistivity for filling factors around the VHS in the two
highest VBs of TBG, in the framework of a model with on-
site Hubbard interaction U. At low temperatures, the linear
behavior of the resistivity can be traced back to the more
general frequency dependence of the electron Green’s
function, characterized by a logarithmic correction indicat-
ing marginal Fermi liquid behavior. We thus predict that
fingerprints of a marginal Fermi liquid should also be
present in the heat capacity and the thermal conductivity.
Observing these features experimentally may be a way to
discriminate between the electron-electron and the elec-
tron-phonon interaction as the possible driving force for the
superconducting state as well as for the unconventional
normal state found near half-filling of the two highest VBs
in TBG.
Finally, we stress that the scaling laws we have discussed

persist when the Coulomb interaction is extended to get a
finite spatial range. In that case, quantitative predictions
about the different observables may be greatly enhanced
and, specially in the limit of a long-range Coulomb
interaction (with appropriate internal screening), a regime
of nearly Planckian resistivity can be reached, with the
transport decay rate approaching the bound given by T=ℏ.

This work has been supported by Spain’s MINECO
under Grant No. FIS2017-82260-P as well as by the CSIC
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