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GRAPHENE AS A METALLIC MEMBRANE

Graphene combines in a single material a number
of remarkable properties:

very large speed of charge carriers
great mechanical strength
high transparency
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great flexibility
From E. Stolyarova et al., Proc. Natl.

Acad. Sci. 104, 9209 (2007)

The first clue of new physics was obtained from
the observation of the quantum Hall effect:

> E, =sgn(N)1/Zev§‘N‘B

From K. S. Novoselov et al., Nature 438, 197 (2005)
(see also Y. Zhang et al., Nature 438, 201 (2005))



ELECTRONIC PROPERTIES OF GRAPHENE

The observed properties were actually consistent with the
dispersion expected for electrons in a honeycomb lattice
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two-component fermion (Dirac hamiltonian)

We have to introduce a Dirac fermion for each independent Fermi point, at which

H=v.e:p , &p)==tv.p|



ELECTRONIC PROPERTIES OF GRAPHENE

The scattering by impurities is quite unconventional in graphene, due to the chirality of electrons.
When a quasiparticle encircles a closed path in momentum space, it picks up a Berry phase of 7

i27n(o,/2)
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In the absence of scatterers that may induce a large momentum transfer, backscattering is then
suppressed (H.Suzuura and T. Ando, Phys. Rev. Lett. 89,266603 (2002)).
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ELECTRONIC PROPERTIES OF GRAPHENE

Another way of explaining the suppression of backscattering
is by considering that, for the massless Dirac fermions, the
pseudospin gives rise to the conserved quantity

- P
p)

that changes sign upon the inversion of the momentum.

This also explains the peculiar properties of electrons when tunneling across potential barriers:
the transmission probability is equal to 1 at normal incidence, and 0 for backscattering

M. I. Katsnelson, K. S. Novoselov, and
A. K. Geim, Nature Physics 2, 620 (2006)



GAUGE POTENTIALS IN GRAPHENE

1 Gauge potentials from topological defects (pentagonal, heptagonal rings)
(J. G, F. Guinea and M. A. H. Vozmediano, Nucl. Phys. B 406, 771 (1993))

1 Gauge potentials from smooth lattice deformations
(F. Guinea, M. L. Katsnelson and A. K. Geim, Nature Phys. 6, 30 (2009))

1 Gauge potentials from lattice mismatch in graphene bilayers
(M. Mucha-Kruczynski et al., Phys. Rev. B 84, 041404 (2011); Y.-W. Son et al., Phys. Rev. B 84, 155410 (2011);
E. Mariani et al., arXiv:1110.2769) (see also J. Sun et al. Phys. Rev. Lett. 105, 156801 (2010))

P. San-José, J. G. and F. Guinea,
Phys. Rev. Lett. 108, 216802 (2012)




TOPOLOGICAL DEFECTS IN GRAPHENE

The pentagonal carbon rings can be formed by a cut and paste
operation in the plane. This induces an effective rotation of 7/3
at the junction, which implies in turn the exchange of the two

i) o)

The exchange of the two Dirac valleys is only felt when making a complete turn around
the topological defect. Therefore, the effect can be mimicked by a line of effective gauge

Dirac valleys

flux @ threading the pentagonal ring, acting on the (K, K") space

J. G., F. Guinea and M.A.H. Vozmediano,
Nucl. Phys. B 406, 771 (1993)



TOPOLOGICAL DEFECTS IN GRAPHENE

In the fullerenes, the combined effect of the 12 pentagonal rings is consistent with the field
of a monopole, whose charge is dictated by the total flux

The spectrum is then given in terms of the angular momentum number j

2 p2 1Y
EjR=]+§ -g

which, for g=3/2, accounts for the existence of two triplets of zero modes with j=1.




CARBON NANOTUBE-GRAPHENE JUNCTIONS

We can also investigate the effects of negative curvature in graphene. The simplest instance is
a carbon nanotube-graphene junction

1 The nanotube-graphene junction requires an amount of negative curvature
corresponding to 6 heptagons

1 When the heptagons are regularly distributed, the possible geometries are:
- zig-zag nanotubes of type (61,0)
- armchair (67,6n) nanotubes



CARBON NANOTUBE-GRAPHENE JUNCTIONS

There is a general, compact way of describing the nanotube-graphene junctions, when
the topological defects (heptagons) are regularly distributed. We can think of all possible
geometries as assemblies of triangular blocks of honeycomb lattice

This shows again that the number of heptagonal carbon rings is always the same (6). It also
becomes clear that junctions with armchair nanotubes are possible, with geometries (61,6n) .




CARBON NANOTUBE-GRAPHENE JUNCTIONS

We may characterize the junctions by looking at the local density of states (DOS) at low
energies, in different sectors corresponding to eigenvalue g under a rotation of /3 :
(a) q =1 (b) q= eii:r/3 (C) q= ei2i7z/3 (d) q= eii;z

It turns out that all the junctions fall into two ditferent classes, depending on whether the

nanotube geometry is (671,0) with n a multiple of 3 or not.

(24,0)




CARBON NANOTUBE-GRAPHENE JUNCTIONS

Within each class, all the DOS look very similar, with the position of the main features scaled in
inverse proportion to the radius R of the tube:

(12,12)




BOUND STATES

What is then responsible for the
peaks within the depleted DOS
at very low energies?
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One has to look for bound states of the Dirac equation, that can only take place at ¢ =0
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Taking the maximum flux @® =3m , it is then possible to have localized states
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We find a state with m =1 which has an amplitude decaying in both the plane and the nanotube,
as well as another localized state with m =-1 in the other sublattice of the graphene layer.

J. G, F. Guinea and J. Herrero, Phys. Rev. B 79, 165434 (2009)



ARRAYS OF NANOTUBE-GRAPHENE JUNCTIONS

Arrays of carbon nanotube-graphene junctions have been already fabricated in the Fujitsu
Laboratories

Graphene multi-layers Graphene multi-layers

Multi-walled carbon nanctube Multi-walled carbon nanotube

(from Fujitsu Laboratories Ltd.)



ARRAYS OF NANOTUBE-GRAPHENE JUNCTIONS

The arrays of nanotube-graphene junctions have been studied before in the case of very short
armchair tubes by T. Matsumoto and S. Saito, J. Phys. Soc. Japan 71, 2765 (2002):

The most important findings were the semiconducting behavior of the undoped system, and
the appearance of very flat bands at low energies

(a) CE-C1s6 (b) CE-C210

Energy(eV)

Energy(eV)

One may ask what would be the electronic structure of junctions with much longer nanotubes,
and the dependence on their geometry.



ARRAYS OF NANOTUBE-GRAPHENE JUNCTIONS

We may classify again the different arrays by the geometry of their nanotubes.

One of the classes contains the arrays with armchair or (67,0) nanotubes for which # is a multiple
of 3. This is characterized by the presence of a series of very flat bands close to the Fermi level:

(12,12)
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As a general rule:

> the dispersive bands are shifted towards the Fermi level as the distance between the
junctions in the array is enlarged

> the number of flat bands grows at low energies as the nanotube length is increased,
reflecting that their origin lies in the existence of states confined within the nanotubes

J. G., E. Guinea and ]. Herrero, Phys. Rev. B 79, 165434 (2009)



NON-ABELIAN GAUGE FIELDS IN GRAPHENE BILAYERS

It can be shown that graphene bilayers with distinctive Moiré patterns develop confined
electronic states according to the structure of the superlattice
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(from National Institute of
Standards and Technology)



NON-ABELIAN GAUGE FIELDS IN GRAPHENE BILAYERS

We devise a continuum model for the low-energy electronic states in graphene bilayers

0 —i(0,-i0,) V() V(1)
—i(0, + iay) 0 V(1) Vg (1)
H=v, . :
Vi (r) V() 0 —i(0,—-i0,)
VAB'(r) VBB'(r) _i(ax + iay) 0

We can decompose the interlayer tunneling amplitudes in the form
V(1) == A,(0) + 4,(1) V(1) = =4, (1) = 4,(r)

so that A, and A, induce an off-diagonal shift of the momenta. We can write in compact form
H=v,6-(-i0—A) + v,V A=(47,4,7,)
The matrix-valued A acts as a genuine gauge potential, giving rise to a Zeeman term

vé(—@z+i6-A+2iA-8+Af+Ay2—a F )‘P =&’ V¥

z7 xy

where the pseudospin is coupled to the non-Abelian field strength

a 28#/&./ _avA,u _i[Aﬂ ’AV]

uv



NON-ABELIAN GAUGE FIELDS IN SHEARED BILAYERS

0 - i(ax _ iay) VAA‘(r) VAB‘(r)
Hev | (0, +i0,) 0 Vi (r) Vg (1)
" VAA'(r) VBA'(r) 0 - i(ax _iay)
VAB'(r) VBB‘(r) _ i(ax + iay) 0

In the case of strained bilayers, the gauge potentials have the periodicity of the Moiré pattern
V() = =4, (x) + 4, (x) .
Vo () = —4,(x)~ 4,(x)

At large period L, there is an effective potential that has

zeros at the center of AA’ stacking, and either AB” or BA’
stacking depending on the value of the pseudospin o,

Vi (=" +i0-A+2iA-0+ Al + A

~0,(0,4,7, 24, A7,)¥ =& ¥

%,_J )




NON-ABELIAN GAUGE FIELDS IN SHEARED BILAYERS
The precise pattern of confinement is found by diagonalizing the full hamiltonian:

vp o (=i0, — A, (x) 1)+ 0, (k, = A, (x) 7) + V0o () 7, | W (x) = £ P ()

1 For transverse momentum k, # 0, the band structure is strongly reminiscent of that found

in thick carbon nanotubes in a real perpendicular magnetic field

k #0 >

1 Attransverse momentum k, =0, we find that the lowest energy subband touches recurrently

the level of zero energy, which is a genuine effect of the non-Abelian gauge potential

iJ.:dx’[Ax (x")7 —iAy (x")z, ] \P(O)

EL/\’F
—_ N WA O

Y(x),_, =Pe
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P. San-José, J. G. and F. Guinea,
Phys. Rev. Lett. 108, 216802 (2012)



ELECTRONIC PROPERTIES OF TWISTED BILAYERS

1 Low-energy theory in the continuum limit

J. M. B. Lopes dos Santos,
N. M. R. Peres and A. H.
Castro Neto, Phys. Rev.
Lett. 99, 256802 (2007)

G. Liet al., Nat. Phys. 6,
109 (2010)

E. ]. Mele, Phys. Rev. B 81, 161405(R) (2010)

R. Bistritzer and A. H.
MacDonald, Proc. Natl.
Acad. Sci. 108, 12233 (2011)

A. Luican et al., Phys. Rev. Lett.
. 106, 126802 (2011)

R. de Gail et al., Phys. Rev. B 84, 045436 (2011); M. Kindermann and E. J. Mele, Phys. Rev. B 84, 161406(R) (2011);

E. Sudrez Morell et al., Phys. Rev. B 84, 195421 (2011); E. J. Mele, arXiv:1112.2620; J. M. B. Lopes dos Santos et al.,
arXiv:1202.1088 .



NON-ABELIAN GAUGE FIELDS IN TWISTED BILAYERS

In the continuum limit (small rotation angles), the low-energy states of twisted bilayers are
obtained from the hamiltonian

0 —i(, —i0,)+iAK /2 V(1) V(1)
—i(@, +i0,)—iAK /2 0 V,,(r) V(1)
H=ve V() v L(r) 0 —i(0, —i,)—iAK /2
Ve (1) Vs (1) —i(0, +i0,)+iAK /2 0

We define now the gauge fields by
Vg =—4,, + A2y + i(4,, + Aly)
Vg = _Alx - AZy + i(A2x - Aly)

Introducing the generators {7;} of the SU(2) gauge group, we can write in compact form
H=v.6-(-i0-7,AK/2 — N v, ® A= (A, 7+ 4,75, 4,7, + 4,,7,)
d= Re(V,,) 7, =Im(V,,) 7,
We can remove the AK mismatch of the Dirac cones by means of a gauge transformation

i‘[3AK-r ~

Y =e? b4 = szFc-(—i('i—A) + v D



NON-ABELIAN GAUGE FIELDS IN TWISTED BILAYERS

An idea of the pattern of confinement in the twisted bilayer can be obtained (at @ = 0) from

Vi(=0" +i0-A+2iA-0+ A’ + A + 4] + 43,

~0,(0,4,7,+0,4,,71,-0,A4,7,- 0,4, 7, +24 A, 7, =24, A, 7,)) ¥ =& ¥

The combination (4, £4,,)* +(4,, F4,,)° acts as an effective potential, that keeps the
charge density away from the regions of stacking AB” or BA’

v L
2 'g ::‘: ik ‘\@
(4, iAzy) @ S G i
\ 2,

0 = 0.5° 0 = 0.3°
(see also G. T. de Laissardiere et al., Nano Letters 10, 804 (2010))



NON-ABELIAN GAUGE FIELDS IN TWISTED BILAYERS

Why the magic angles?

The first (largest) angle at which the lowest subband becomes
flat corresponds to the situation in which the pseudomagnetic
length [ starts to fit in the unit cell of the superlattice

VL

w

~ L

[,

Actually, the lowest subband becomes flat at the same twist angle that the integral of the field
strength over the unit cell equals the quantum of flux (27t%), up to rotations in SU(2) space:

S
A n O _l-ei272'n/3 L:.g.n'
_ 2 ~ o
¢ = uﬁ{t C’;H ny ~ 27 [i o273 0 g zoe  P. San-José, ]. G. and F. Guinea,
$ S Phys. Rev. Lett. 108, 216802 (2012)
SRt ¢ % ﬁmﬁ

Smaller magic angles are not so simple to characterize, as the scalar potential @ from the AA’
regions starts to have then significant influence on the low-energy subbands.



In conclusion, we have seen that the pseudomagnetic fields that arise in the graphene lattice
may provide an efficient mechanism to confine electronic states in the low-lying subbands

1 The regular arrangement of the flux from
topological defects may lead to bound
states in the graphene layer, reflected in
the formation of flat bands near the Fermi
level

1 The mismatch in the registry of graphene
bilayers leads to regular patterns of
electron localization, with recurrent
development of flat bands at zero energy
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