EXCITONIC GAP FROM LONG-RANGE COULOMB INTERACTION IN GRAPHENE

J. González Instituto de Estructura de la Materia, CSIC, Spain

Is it possible to have a gap generated spontaneously by interactions in graphene?

There have been already several analyses using different approximations:

Gap equation, 1/N approximation. D. V. Khveshchenko, PRL 87, 246802 (2001);
E. V. Gorbar, V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, PRB 66, 045108 (2002).

Renormalization group, 1/N approximation. J. E. Drut and D. T. Son, PRB 77, 075115 (2008); J. González, PRB 82, 155404 (2010) \Rightarrow critical $N_c = 32/\pi^2$

Lattice field theory. J. E. Drut and T. A. Lähde, PRL 102, 026802 (2009); PRB 79, 241405(R) (2009) \Rightarrow critical $\alpha_c \approx 1.08$

(see also W. Armour, S. Hands, C. Strouthos, PRB 81, 125105 (2010))

Ladder approximation, static polarization. J. Wang, H. A. Fertig and G. Murthy, PRL 104, 186401 (2010); O. V. Gamayun, E. V. Gorbar and V. P. Gusynin, PRB 80, 165429 (2009)

 \Rightarrow critical $\alpha_c \approx 1.62$

- Gap equation, dynamical screening. O. V. Gamayun, E. V. Gorbar and V. P. Gusynin, PRB 81, 075429 (2010) ⇒ critical $\alpha_c \approx 0.92$
- Ladder approximation, dynamical screening. J. G., arXiv:1103.3650

 \Rightarrow critical $\alpha_c \approx 0.99$

Effect of Fermi velocity renormalization. D. V. Khveshchenko, JPCM 21, 075303 (2009);
J. Sabio, F. Sols and F. Guinea, PRB 82, 121413(R) (2010).

Gross-Neveu interactions. I. F. Herbut, V. Juricic and O. Vafek, PRB 80, 075432 (2009);
V. Juricic, I. F. Herbut and G. W. Semenoff, PRB 80, 081405 (2009).

EXCITONIC INSTABILITY. RENORMALIZATION GROUP

The excitonic instability can be characterized by the divergence of the susceptibility

$$\Pi^{(3)}(\mathbf{r}) = \left\langle \Psi^{+}(\mathbf{r}) \,\sigma_{_{3}} \Psi(\mathbf{r}) \,\Psi^{+}(\mathbf{0}) \,\sigma_{_{3}} \Psi(\mathbf{0}) \right\rangle$$

A divergence of $\Pi^{(3)}$ at $\mathbf{q} \rightarrow 0$ will imply the spontaneous development of a condensate

$$\langle \Psi^{+}(\mathbf{r}) \sigma_{_{3}} \Psi(\mathbf{r}) \rangle \neq 0$$

The low-energy behavior of the susceptibility is:

non-interacting theory $\Pi^{(3)}(\mathbf{q}, \omega = 0) \sim |\mathbf{q}|$

interacting theory $\Pi^{(3)}(\mathbf{q},\omega=0) \sim \left|\mathbf{q}\right| \left(\frac{|\mathbf{q}|}{\mu}\right)^{-2\gamma}$

The scaling of $\Pi^{(3)}$ is modified because the interactions introduce dependence on the cutoff Λ

The independence of $\Pi^{(3)}(\mathbf{q},0) = (Z_{\psi^2})^{-2} \Pi^{(3)}_{ren}(\mathbf{q},0)$ on μ leads to the equation

$$\left(\mu\frac{\partial}{\partial\mu}-2\gamma\right)\Pi_{ren}^{(3)}(\mathbf{q},0)=0 \qquad \Rightarrow \quad \Pi_{ren}^{(3)}(\mathbf{q},0)\sim\mu^{2\gamma} \qquad \gamma=\mu\frac{\partial\log Z_{\psi^2}}{\partial\mu}=-\Lambda\frac{\partial\log Z_{\psi^2}}{\partial\mu}$$

EXCITONIC INSTABILITY. 1/N APPROXIMATION

The question is to compute the logarithmic dependence on the cutoff Λ when the interaction is screened with the polarization $\chi(\mathbf{q}, \omega) = (N/16)\mathbf{q}^2/\sqrt{v_F^2\mathbf{q}^2 - \omega^2}$

$$\Gamma_{3}(\mathbf{q};\mathbf{k}) = \sigma_{3} + i \int \frac{d^{2}p}{(2\pi)^{2}} \int \frac{d\omega_{p}}{2\pi} G_{0}(\mathbf{p},\omega_{p}) \sigma_{3}G_{0}(\mathbf{p}+\mathbf{q},\omega_{p}) \frac{e^{2}}{2|\mathbf{p}-\mathbf{k}| + e^{2}\chi(\mathbf{p}-\mathbf{k},\omega_{p}-\omega_{k})}$$

We get the cutoff dependence

$$\Gamma_{3}(\mathbf{q};\mathbf{k}) = \sigma_{3} + \sigma_{3} \frac{8}{\pi^{2}N} g \frac{\arccos(g)}{\sqrt{1-g^{2}}} \log(\Lambda) \qquad g \equiv \frac{N}{32} \frac{e^{2}}{v_{F}}$$

But part of the divergence comes from simple renormalization of the quasiparticle weight, since the vertex with the operator σ_0 is already logarithmically divergent

$$\Gamma_0(\mathbf{q};\mathbf{k}) = \sigma_0 + \sigma_0 \frac{8}{\pi^2 N} \left(\frac{\pi}{g} - \frac{2 - g^2}{g} \frac{\arccos(g)}{\sqrt{1 - g^2}} - 2 \right) \log(\Lambda)$$

(J. G., F. Guinea and M.A.H. Vozmediano, Phys. Rev. B 59, 2474 (1999))

EXCITONIC INSTABILITY. 1/N APPROXIMATION

The vertex can be made finite by taking

$$\Gamma_{3}(\mathbf{q};\mathbf{k})\Big|_{\mathrm{ren}} = \sum_{\psi^{2}} \sum_{\psi} \Gamma_{3}(\mathbf{q};\mathbf{k}) \qquad \qquad \sum_{\psi^{2}} = 1 - \frac{8}{\pi^{2}N} \left(2 + \frac{2}{g} \frac{\operatorname{arccos}(g)}{\sqrt{1 - g^{2}}} - \frac{\pi}{g}\right) \log(\Lambda/\mu)$$

In analogous fashion, the susceptibility

 $\left| \Pi^{(3)}(\mathbf{q}, \omega_q) \right|_{\text{ren}} \sim \left| \sum_{\psi^2}^2 \Pi^{(3)}(\mathbf{q}, \omega_q) \right|_{\psi^2}$

This means that the susceptibility gets an anomalous dependence

$$\Pi^{(3)}(\mathbf{q},\omega=0)\Big|_{\text{ren}} \sim \left|\mathbf{q}\right| \left(\frac{|\mathbf{q}|}{\mu}\right)^{-2\gamma} \qquad \gamma = \mu \frac{\partial \log Z_{\psi^2}}{\partial \mu} = \frac{8}{\pi^2 N} \left(2 + \frac{2}{g} \frac{\arccos(g)}{\sqrt{1-g^2}} - \frac{\pi}{g}\right)$$

The susceptibility blows up at $\mathbf{q} \rightarrow 0$ when

 $1 - 2\gamma < 0$

This is the signature of the excitonic instability, which allows to identify the phase with

 $\langle \Psi^{+}(\mathbf{r}) \sigma_{_{3}} \Psi(\mathbf{r}) \rangle \neq 0$

(J. G., PRB 82, 155404 (2010))

EXCITONIC INSTABILITY. LADDER APPROXIMATION

We can go beyond the 1/N expansion with the ladder approximation

Screening the interaction in the static limit, we get the self-consistent equation

$$\Gamma_{3}(\mathbf{0};\mathbf{k}) = \sigma_{3} + \pi \lambda \int \frac{d^{2}p}{(2\pi)^{2}} \Gamma_{3}(\mathbf{0};\mathbf{p}) \frac{1}{|\mathbf{p}|} \frac{1}{|\mathbf{p}-\mathbf{k}|} \qquad \lambda = \frac{\alpha}{1 + \frac{N\pi}{8}\alpha} \qquad (\alpha = e^{2}/4\pi v_{F})$$

A suitable way of extracting the scale dependence of Γ_3 is to compute the integrals at dimension $d = 2 - \varepsilon$. The only dependence on μ comes from the need to introduce a dimensionful $\lambda_0 = \mu^{\varepsilon} \lambda$. The ultraviolet divergences in Γ_3 now appear as poles $1/\varepsilon$, $1/\varepsilon^2$, ...

$$\Gamma_{3}(\mathbf{q};\mathbf{k})\Big|_{\mathrm{ren}} = Z_{\psi^{2}}\Gamma_{3}(\mathbf{q};\mathbf{k}) \qquad \qquad Z_{\psi^{2}} = 1 + \sum_{n=1}^{\infty} \frac{C_{n}(\lambda)}{\varepsilon^{n}}$$

The anomalous dimension is now

$$\gamma = \mu \frac{\partial \log Z_{\psi^2}}{\partial \mu} = \mu \frac{\partial \lambda}{\partial \mu} \frac{\partial \log Z_{\psi^2}}{\partial \lambda} = -\lambda \frac{dc_1(\lambda)}{d\lambda}$$

EXCITONIC INSTABILITY. LADDER APPROXIMATION.

The anomalous dimension $\gamma = -\lambda dc_1(\lambda)/d\lambda$ can be computed perturbatively from the expansion

$$c_1(\lambda) = \sum_{n=1}^{\infty} c_1^{(n)} \lambda^n$$

It turns out that the series for γ has a finite radius of convergence, $\lambda_c \approx 0.45$, at which the anomalous dimension diverges (J. G., PRB 82, 155404 (2010)). The boundary of the excitonic instability corresponds now to

 $= e^2 / 4\pi v_{\rm F}$)

$$\lambda_c = \frac{\alpha_c}{1 + \frac{N\pi}{8}\alpha_c} \tag{a}$$

leading to a much more extended region with exciton condensation in the (N,α) phase diagram

 $(\alpha_c \approx 1.53 \text{ for } N = 4)$

$$\begin{array}{c} 4 \\ 3 \\ -\frac{4}{2} \\ -\frac{4}{2$$

EXCITONIC INSTABILITY. LADDER APPROXIMATION

 $\widetilde{v}_F(\mathbf{p}) = Z_V v_F + \zeta'$

The above approach can be improved adding the effect of electron self-energy corrections

$$\Gamma_{3}(\mathbf{0};\mathbf{k}) = \sigma_{3} + \pi \lambda v_{F} \int \frac{d^{2}p}{(2\pi)^{2}} \Gamma_{3}(\mathbf{0};\mathbf{p}) \frac{1}{\widetilde{v}_{F}(\mathbf{p})|\mathbf{p}|} \frac{1}{|\mathbf{p}-\mathbf{k}|}$$

$$\lambda = \frac{\alpha}{1 + \frac{N\pi}{8}\alpha}$$

In this case the self-energy gets a pole in $\varepsilon = 2 - d$, that we have to subtract with $Z_v = 1 - b_1/\varepsilon$, leading to a renormalization of the coupling

$$\lambda_{_{0}}=\mu^{_{arepsilon}}rac{\lambda}{1-rac{b_{_{1}}(\lambda)}{arepsilon}}$$

This changes the position of the poles in

$$Z_{\psi^2} = 1 + \sum_{n=1}^{\infty} \frac{C_n(\lambda)}{\varepsilon^n}$$

and the radius of convergence in $\gamma = -\lambda \ dc_1(\lambda)/d\lambda$ is shifted to a larger value $\lambda_c \approx 0.49$

 $(\alpha_c \approx 2.09 \text{ for } N = 4)$

(J. G., arXiv:1103.3650)

EXCITONIC INSTABILITY. DYNAMICAL SCREENING

We can also study the excitonic instability when the Coulomb interaction is screened with the dynamical polarization: k+q k+q k+q

In this case, the ladder approximation for the vertex is encoded into the integral equation

$$\Gamma_{3}(0;\mathbf{k},\omega_{k}) = \sigma_{3} + \int \frac{d^{2}p}{(2\pi)^{2}} \int \frac{d\omega_{p}}{2\pi} \Gamma_{3}(0;\mathbf{p},\omega_{p}) \frac{1}{v_{F}^{2}\mathbf{p}^{2} + \omega_{p}^{2}} \frac{e^{2}}{2|\mathbf{p}-\mathbf{k}| + e^{2}\chi(\mathbf{p}-\mathbf{k},i\omega_{p}-i\omega_{k})}$$

One observes again that the vertex blows up at a critical coupling α_c for exciton condensation.

By following the dependence on the high-energy cutoff Λ , one can make use of the scaling law

$$\alpha_{c}(\Lambda) = \alpha_{c}(\infty) + \frac{c}{\Lambda^{v}}$$

$$(\alpha_{\rm c}(\infty) \approx 0.99 \text{ for } N = 4)$$

In conclusion:

We have incorporated different many-body corrections to the vertex for exciton condensation in the theory of N Dirac fermions with Coulomb interaction:

- in the ladder approximation, the static screening of the Coulomb interaction leads to $\alpha_c \approx 1.53$ for N = 4
- incorporating electron self-energy corrections in the ladder approximation weakens the exciton instability, leading to $\alpha_c \approx 2.09$ for N = 4
- supplementing the ladder approximation with the dynamical screening of the Coulomb interaction shows that the static limit overestimates the screening effects, and that a more reliable value is $\alpha_c \approx 0.99$ for N = 4

It is still puzzling that the values found for α_c would imply the development of a gap in the spectrum of free-standing graphene samples, while there seems to be no experimental observation in that direction \Rightarrow possible effect of Fermi velocity scaling at low energies, with the

consequent reduction of the effective values of the coupling $\alpha = e^2/4\pi v_F$