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Is it possible to have a gap generated spontaneously by interactions
in graphene?
There have been already several analyses using different approximations:

@ Gap equation, 1/N approximation. D. V. Khveshchenko, PRL 87, 246802 (2001);
E. V. Gorbar, V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, PRB 66, 045108 (2002).
@ Renormalization group, 1/N approximation. J. E. Drut and D. T. Son, PRB 77, 075115 (2008);

J. Gonzélez, PRB 82, 155404 (2010) = critical N =32/m2
M Lattice field theory. J. E. Drut and T. A. Lihde, PRL 102, 026802 (2009); PRB 79, 241405(R)
(2009) — critical o, =1.08

(see also W. Armour, S. Hands, C. Strouthos, PRB 81, 125105 (2010))

@ Ladder approximation, static polarization. J. Wang, H. A. Fertig and G. Murthy, PRL 104,
186401 (2010); O. V. Gamayun, E. V. Gorbar and V. P. Gusynin, PRB 80, 165429 (2009)

— critical a,~1.62

@ Gap equation, dynamical screening. O. V. Gamayun, E. V. Gorbar and V. P. Gusynin, PRB
81, 075429 (2010) = critical a,=0.92

@ Ladder approximation, dynamical screening. J. G., arXiv:1103.3650

= critical a.=0.99
@ Effect of Fermi velocity renormalization. D. V. Khveshchenko, JPCM 21, 075303 (2009);
J. Sabio, F. Sols and F. Guinea, PRB 82, 121413(R) (2010).
M Gross-Neveu interactions. I. F. Herbut, V. Juricic and O. Vafek, PRB 80, 075432 (2009);
V. Juricic, I. F. Herbut and G. W. Semenoff, PRB 80, 081405 (2009).




EXCITONIC INSTABILITY. RENORMALIZATION GROUP

The excitonic instability can be characterized by the divergence of the susceptibility
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A divergence of TI®) at q — 0 will imply the spontaneous development of a condensate
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The low-energy behavior of the susceptibility is:
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EXCITONIC INSTABILITY. 1/N APPROXIMATION

The question is to compute the logarithmic dependence on the cutoff A when the interaction

is screened with the polarization  y(qg,w) = (N /16)q°/V'q® — &’
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We get the cutoff dependence
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But part of the divergence comes from simple renormalization of the quasiparticle weight,
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since the vertex with the operator o is already logarithmically divergent
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Phys. Rev. B 59, 2474 (1999))




EXCITONIC INSTABILITY. 1/N APPROXIMATION

The vertex can be made finite by taking

I;(a;k)
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In analogous fashion, the susceptibility

n® (q, a)q) |ren ~ Z 5/2 n® (q, coq)

This means that the susceptibility gets an anomalous dependence
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The susceptibility blows up at q = 0
when
1-2y<0
This is the signature of the excitonic
st

instability, which allows to identify 2 S ]
the phase with
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(J. G., PRB 82, 155404 (2010))




EXCITONIC INSTABILITY. LADDER APPROXIMATION

We can go beyond the 1/N expansion with the ladder approximation

Screening the interaction in the static limit, we get the self-consistent equation
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A suitable way of extracting the scale dependence of I'; is to compute the integrals at
dimension d =2 - ¢.The only dependence on u comes from the need to introduce a
dimensionful A,= p¢ A . The ultraviolet divergences in T'; now appear as poles 1/g, 1/¢€2, ...
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The anomalous dimension is now
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EXCITONIC INSTABILITY. LADDER APPROXIMATION.

The anomalous dimension y =-A dc;(A)/dA  can be computed perturbatively from the
expansion
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It turns out that the series for y has a finite radius of convergence, A= 0.45, at which the
anomalous dimension diverges (J. G., PRB 82, 155404 (2010)).
The boundary of the excitonic instability corresponds now to
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leading to a much more extended
region with exciton condensation

in the (N,a) phase diagram
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EXCITONIC INSTABILITY. LADDER APPROXIMATION

The above approach can be improved adding the effect of electron self-energy corrections
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In this case the self-energy gets a pole in ¢ =2 -d , that we have to subtract with Z =1 -b,/¢,

leading to a renormalization of the coupling
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This changes the position of the poles in
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and the radius of convergence in y =-A dc;(A)/dA

is shifted to a larger value A. = 0.49 !
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(J. G., arXiv:1103.3650)

(a.=2.09 for N=4)




EXCITONIC INSTABILITY. DYNAMICAL SCREENING

We can also study the excitonic instability when the Coulomb interaction is screened with the
dynamical polarization:

In this case, the ladder approximation for the vertex is encoded into the integral equation
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One observes again that the vertex blows up at a critical coupling «. for exciton condensation.

By following the dependence on the
high-energy cutoff A, one can
make use of the scaling law

a.(A)=a,(2) +
(J. G., arXiv:1103.3650)
(ax(0) = 0.99 for N =4)



In conclusion:

We have incorporated different many-body corrections to the vertex for exciton
condensation in the theory of N Dirac fermions with Coulomb interaction:

@ in the ladder approximation, the static screening of the Coulomb interaction
leadsto «a_=1.53 for N=4

@ incorporating electron self-energy corrections in the ladder approximation
weakens the exciton instability, leading to «a_=2.09 for N=4

@ supplementing the ladder approximation with the dynamical screening of

the Coulomb interaction shows that the static limit overestimates the screening
effects, and that a more reliable valueis a_=0.99 for N =4

It is still puzzling that the values found for ., would imply the development
of a gap in the spectrum of free-standing graphene samples, while there seems
to be no experimental observation in that direction

= possible effect of Fermi velocity scaling at low energies, with the

consequent reduction of the effective values of the coupling a = e?/4mv,
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