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GRAPHENE

Graphene offers the possibility to study the behavior

of electrons in a genuine two-dimensional system:

§  access to the physics of relativistic massless
fermions in D =2

1 great potential for applications from very large
electron mobilities, flexibility and extreme
mechanical strength

From E. Stolyarova et al.,

Proc. Natl. Acad. Sci. 104, 9209 (2007)

But some challenges have to be faced:

1 the interaction with the substrate and
boundary conditions modity significantly
the transport properties
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e 1 samples have significant corrugation

From E. Stolyarova et al.,

Proc. Natl. Acad. Sci. 104, 9209 (2007)



RIPPLES IN GRAPHENE

In exfoliated graphene, ripples are correlated to some extent with the corrugation of the
substrate, but they also arise in part as an effect intrinsic to the two-dimensional membrane:
% ]J. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth and S. Roth, Nature 446, 60 (2007).

1 W.Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames and C. N. Lau, Nature Nanotech. 4, 562 (2009).

V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte, M. Schmidt, R. Riickamp, M. C. Lemme, and
M. Morgenstern, Phys. Rev. Lett. 102, 076102 (2009).

From V. Geringer et al.,

PRL 102, 076102 (2007)
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There have been a few theoretical proposals to understand the existence of ripples in graphene,
either from Monte Carlo simulations of the membrane

1 A. Fasolino, J. H. Los, and M. I. Katsnelson, Nature Mater. 6, 858 (2007)

or from the behavior as an electronic membrane (E.-A. Kim and A. H. Castro Neto, EPL 84, 57007 (2008))
" D. Gazit, Phys. Rev. B 80, 161406(R) (2009)

% P.San-José, J. G. and F. Guinea, Phys. Rev. Lett. 106, 045502 (2011)



ELECTRONIC PROPERTIES OF GRAPHENE

The observed properties were actually consistent with the
dispersion expected for electrons in a honeycomb lattice

Hy = _tZWJr(r') y(r) ——s H=-t Ze_ip.w: ’
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Expanding around each corner of the Brillouin 0 p._—ip
zone, we obtain the hamiltonian for a H= VF( yj

p.+ip, 0

two-component fermion (Dirac hamiltonian)

We have to introduce a Dirac fermion for each independent Fermi point, at which

H=v.6-p , &p)==tv.|p|



MANY-BODY EFFECTS IN GRAPHENE

Graphene is a system with remarkable many-body properties, which can be traced back to
the fact that the action of the interacting theory

S =[dtd’x W) (0, ~ve6'0) WE(x) — € [dr d’x dx W (0) W (%) T P (x) W ()

\X\

is invariant under the scale transformation

t—>st , X—osx , YX)-os YX)

This leads to the logarithmic scaling of many observables driven by the Coulomb interaction:

L i—Zl ~ w-v,6-K
G G,
- 7(g) (0- B(g)v,6-Kk) log(E./ w)

. . (g=e’/16v))
(J. G., E. Guinea and M. A. H. Vozmediano, F

Nucl . Phys. B424, 595 (1994), Phys. Rev. B 59,
2474 (1999))



ELASTIC PROPERTIES OF GRAPHENE

Graphene has also phonon modes, which confer the elastic
properties to the material. The lowest-energy phonon branch
correspond to flexural phonons, which must have at low

100 meV

momenta the dispersion

g(p) o« p’

It is a nontrivial fact that a two-dimensional membrane can exist with such massless modes.

Two important issues are

1 stability of the membrane against crumpling

(development of a phase with uncorrelated >
normals at the surface)

1 stability of the flat phase of the membrane
against spontaneous symmetry breaking >
(development of an inhomogeneous buckled
surface)




ELASTIC PROPERTIES OF MEMBRANES

D-dimensional membranes r(x) embedded in a d-dimensional ambient space have in general
a free energy

F = J.de[g (07r)* +u(0,r0 ,r)(0,r0 ;r)+w(0,ror)* + % (airéir)}

For membranes with fixed connectivity there is a preferred frame in which we can decompose
r(x) = (£ x+u(x),h(x))

& 1is an order parameter for the crumpling transition.
The fixed-connectivity membranes are shown to have

a critical temperature T,, below which £#0 and

= %Z(J.dDiC(GZh)i+%:[de<2ﬂ uyvul] +A uiiquJ)Jr%tJ.de U,
bending stretching tension

|
in terms of the strain tensor u, = E(a U+ 0 Ut 0,ho jh)



ELASTIC PROPERTIES OF MEMBRANES

To understand the flat phase at low temperature, we may integrate out the in-plane phonon
modes (D. R. Nelson and L. Peliti, J. Physique 48, 1085 (1987)):
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2
=—Kjdx(a h)? +— Kjdz( P!8,hd hj : Kozzym-zﬂM

This is now an interacting theory in which the flexural phonons get self-energy corrections

(e(p))’ =xp* +Z(p)

(((rep)22 1
R ”‘TK("’I(M)& ¢ )@t

The self-consistent solution of the above equation leads to

K‘eff(p)~1/kBTKoﬁ = ()=~ ((@h))= ij 1

(Zﬂ) Ker(0)Q°

Further refinement in the computation of .4 (p) ~ p™ seems to converge to an anomalous
exponent 7= 0.8 (P. Le Doussal and L. Radzihovsky, PRL 69, 1209 (1992)).



ELASTIC PROPERTIES OF GRAPHENE

Graphene has a relatively large stiffness, which makes relevant the zero-temperature limit:

1 2 2 2 2 1 2 1 T i
- [ a*x (p(@,h(x))* - x(@h(x)) )—EK0 [t a*x (213 0.h(x) 0 h(x)j

ij i

The theory for the flexural modes is invariant at the classical level under the transformation
t—>st , X—osx o, h(x)—> hx)

This opens the way to study the scaling of the different parameters in the quantum theory

K(? d d2 q4 K(? d2 q 0 qu 1
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fofal

which is consistent with a steady renormalization of the interaction coupling towards lower
values in the infrared.



ELASTIC PROPERTIES OF GRAPHENE

In a wilsonian renormalization group approach, we get upon progressive integration of

high-energy shells:

oK, 3 K;
oq 647 \[pK?

q

ok 3 K,
q@q 167 | pK

We obtain the counterpart of the behavior found in the statistical field theory of membranes,

now extended to the quantum theory at T=0:

1 the membrane (without conduction electrons) should
flow at large distances to the weak coupling regime,

with asymptotic behavior
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ELASTIC PROPERTIES OF GRAPHENE

But in graphene there is also a strong coupling of the electrons to the phonon modes, which
takes place mainly through charge density fluctuations

§ =5 j di d*x W (x)W(x) (2 0,u,(X) + 0,h(x)0,h(x))

We can inspect the scaling of this interaction from the point of view of the flexural phonons:

1 2 2 9 ) 1 » (1 o7 i
S=2 [ a*x(p(@,h(x))* = x(@h(x)) )—EK0 [ara x(zpij 0.h(x) ﬁjh(x)j
t—=st , Xosx ., h(x)> h(x)

This leads to a modified scaling of the Dirac fermions:
S =[dra*x ¥ (x) i(0, ~v,6“-0) ¥ (%)

t>st , x-osx , YX)-os5PY(X)

under which the electron-phonon interaction turns out to be irrelevant at large-distance
scales (s — )

Sem=g j did’x :P*(ley(x) gz 0.14.(x) + 0.h(x)d,h(x))

s I 1
s 52




ELASTIC PROPERTIES OF GRAPHENE

However, the electron-phonon coupling gives rise to an effective attractive interaction which
may drastically modify the behavior of the flexural phonons.

We can integrate first the electron degrees of freedom:

2

q

2 .2 2
4,/viq° — o

S =28"[d’qdw 2(0.0) v, ,  x(q.0)=-

We observe that the effective interaction acts as a shift in the Lamé constant

A—)/l—gzM
Vi

Integrating then the in-plane phonons as before, we get the action for flexural phonons

: I (1 1
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with interaction potential K(Q)=2u+1-g

Vi 2,u+/1—g2‘q‘/vF
S




ELASTIC PROPERTIES OF GRAPHENE

For computational purposes, it is convenient to expand the coupling function K(q) into
a series of couplings for increasingly irrelevant operators

(ﬂ’_gz‘q‘/vF)z — n
2,u+ﬂ,—g2‘q‘/vF _;an

2
K(q)=2p+A—5-q-
Vr

The irrelevant character of additional couplings is manifest in the self-energy corrections:
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We can write down the hierarchy of scaling equations
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1.4 R) 1
n _ K K.
q &g 6471 \/;Kyz iﬂzzn it




ELASTIC PROPERTIES OF GRAPHENE

In practice, we have dealt with an expansion of the coupling function K(q) to second order

K(q)=K, +K1‘q‘ +K2‘q‘2 + 0(1‘1‘3)

with the respective couplings given in terms of the electron-phonon coupling ¢ by

2 2 2 4
(~40.3eV/A%) , K, =—L2g— (~0.16g> eV/A) , K, =—4L3g—2 (~0.0009g* eV)
Qu+i) v, Qu+i) v2

U+
2u+ A

Ky=4u

The resolution of the scaling equations gives rise to different regimes depending on g¢ :
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at sufficiently large g, but still in the perturbative
regime, we find a significant reduction of the

bending rigidity
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1 we cannot access however the most interesting
strong-coupling regime with K;/p?x3? ~1, where

e it is likely a more drastic softening of the dispersion
0.0 0.5 1.0 15 20

gqga

(P. San-José, J. G. and F. Guinea, PRL 106, 045502 (2011))



ELASTIC PROPERTIES OF GRAPHENE

In order to capture the physics of the strong-coupling regime, we can adopt an alternative
nonperturbative approach based on a self-consistent solution of « :

D_l(qaa)):pa)z _Kq4

zpa)z_lcoq4_q4l d’p sin*(0)p’ K, +K[p—q[+ K,Jp—qf

2727 (p-q) Jpx

The resolution gives rise to a momentum-dependent bending rigidity x(q) :

1 for g=0, we find a hardening of the dispersion
extending the analysis of Nelson and Peliti at T=0

1 at moderate deformation potential g>10eV,
there is an intermediate length scale where the
rigidity is sensibly reduced

1 at some critical g, x(q) is driven to zero, marking

the point beyond which a real self-consistent
solution does not exist

1.0 1.5 20

(P. San-José, J. G. and F. Guinea, PRL 106, 045502 (2011))



ELASTIC PROPERTIES OF GRAPHENE

rigid phase

8.0 02 04 06 08 1.0
Ko (eV)

We can therefore characterize a rigid phase of
graphene where it exists as a flat membrane
over long-distance scales.

However, at the phase boundary we still have
to make sense of a membrane with vanishing
rigidity (and divergent fluctuations of the
out-of-plane phonon field)



SPONTANEOUS SYMMETRY BREAKING

The model of flexural phonons becomes singular much
in the same way as that of a scalar field with zero or
negative mass square, in which the theory quantized
around the trivial vacuum ¢ =0 is plagued by infrared
divergences and interactions play an important role in

stabilizing the effective potential.

There is actually a correspondence between the interacting model of flexural phonons and
the relativistic scalar field theory with cuartic interaction

S = % j dt d’x ( p(0,h(x))* — (0 0h(x))* — y (P 0h(x) Oh(x)) —%KO (P Oh(x) 6h(X))2j

S = % j dt d"x((0,4(x))* —(@H(x))* —m’ ($(x))* - 2 ($(x))*)

that, for D =3, have also in common their renormalizability at the quantum level.



SPONTANEOUS SYMMETRY BREAKING

It can be shown that the effective action

Sl (0]= X T,y T (X i (30 ()

).y

has actually the same structure than that of the relativistic scalar theory (at least to leading
order ina 1/d expansion for large number of field components).

The effective action S.lh,,] satisfies in general

5 Seff [hav (X)] = O
Sh, ’

h,, (x) = (h(x))

so that minima with /1_,#0 are the signal of spontaneous symmetry breaking.

In our case it proves useful to rewrite the interaction with an auxiliary field o

j. S dtdzxKO( Pla.h(x)0, h(x)) —jdtcﬂ [(a(x)) \/_a(x)( Plo:h(x)0, h(x)D
[d h(x)] €

j[d h(x)][d o(x)] €

The effective action is obtained by shifting by the average field h(x) = h,(x) + h q(x) , and it can
be computed exactly in the limit of large d by integration of the quantum /.(x) fields.



SPONTANEOUS SYMMETRY BREAKING

Upon integration of the h (x) field, we get:

|
Vesr [hav9 Go] = 8—2 (_ 602 + 2\/K70 UayJo|<a C70)

i 1 Kn/Z J' d2p da) p2n
= n(Q2n)" Pk 272) 27 (po’ —xp*)”

oo=N oy, . U, (X)= AP ok, (x) 0k, (X)

The perturbative series has to be summed first to avoid the infrared divergences
(P. San-José, J. G. and F. Guinea, PRL 106, 045502 (2011)):

1 d’p d K ’ K i
I/eff [hav’ 60 ] = g(_ 0-02 + 2\/K70 uav,‘q‘<A 00) J. p s [ \/70 o p 4 + 1Og£1 + \/70 O p J]
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This logarithmic dependence coincides precisely with the expression of the effective potential
of a relativistic scalar theory in 3+1 dimensions (S. Coleman, R. Jackiw, H. Politzer, PRD 10, 2491 (1974)).

We can borrow then the knowledge about Higgs condensation in relativistic scalar field theories,
to describe now the development of a nonvanishing expectation value Poh,oh,, #0



SPONTANEOUS SYMMETRY BREAKING

The tension y plays here the same role as the mass square m? of the Higgs, and it drives from
the phase without symmetry breaking to the phase with scalar field condensation:

1 1 K K
I/eff [ha"’ G0 ] - W (_ 602 - 2\/K70 uav,\qkA Oy +y uav,\qkA )+ 872'2 1672'\/%7(3/2 602 log[ 87;/71[0)]( %J

Uy, (X) = AP Oh,,(x) h,, (%)

After integrating the auxiliary field o we get the effective potential as a function of Poh, 0h,, :

For m?>=0 (y =0 in our case), it is still controversial whether spontaneous symmetry breaking
may take place in the Higgs model, as V., becomes complex above some value of the average
field, pointing at an instability of the theory (at least in the 1/N approximation).



In conclusion:

For physically sensible values of the graphene electron-phonon coupling g (= 23 eV),
the system of flexural phonons shows a singularity (zero) in the bending rigidity « .

Resummation of perturbation theory shows that the singularity can be integrated out,
but at the expense of introducing tension in the model, which leads to the possibility of
describing spontaneous symmetry breaking for y <0.

The discussion of whether condensation takes place for y =0 bring us back to the similar
question in the massless Higgs theory, allowing to pose it as an experimentally addressable
problem in graphene.

Overall, we have a consistent mechanism for the development of ripples in graphene as
a phenomenon of condensation of vortices for the gradient of the flexural phonon field,
which should persist at temperature T#0 .
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