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1 Introduction

Carbon nanotubes are tubular structures that can be thought of as the result of
wrapping up the carbon honeycomb lattice of a graphene sheet. They were discov-
ered in 1991 with the use of high-resolution transmission-electron microscopy, by
observing the soot produced from an arc discharge between carbon rods[1]. Since
then they have been a fascinating subject of research due to their remarkable me-
chanical, chemical and electronic properties[2]. Carbon nanotubes have become very
promising in the field of molecular electronics, in which atoms and molecules are en-
visaged as the building blocks in the fabrication of electronic devices. In this respect,
the great expectatives placed on the nanotubes are also shared by the fullerenes[3].
These also can be thought as being assembled from the hexagonal carbon rings of a
graphene sheet, by making a close cage by insertion of twelve pentagonal rings. The
multiple forms and shapes in which the carbon-based materials may appear, with
varying physical and chemical properties, is what makes them so interesting for the
purpose of designing and fabricating nanoscale devices.

The nanotubes as well as the fullerenes have a molecular structure that makes
them particularly suitable to develop an alternative, at the nanometer scale, to
the silicon-based integrated electronics. It is known, for instance, that nanotubes
have a remarkable stifness along the tubular direction, reinforcing the structure
of the components based on them. On the other hand, the design of electronic
devices at the molecular scale requires taking into account novel effects which stem
from the reduced dimensionality of the systems under consideration. In the case of
individual single-walled nanotubes at low temperatures, it has been shown that the
electron waves may remain extended along the nanotubes over lengths of several
microns[4, 5]. This means that the motion of the electrons cannot be understood
in terms of classical diffussion, and that instead they show a genuine quantum
mechanical behavior, up to the point that interference patterns between the electron
waves can be observed[6].

The behavior of the nanotubes as true quantum wires leads to remarkable predic-
tions, like the ballistic transport along the longitudinal direction. This effect seems
to have been observed in multi-walled nanotubes|7], which have an onion-like struc-
ture of concentric single-walled nanotubes. The very large current densities observed
there (above 107 A cm™?) seem to be only compatible with transport without dissipa-
tion in the nanotube structure. On the other hand, single-walled nanotubes are also
commonly found forming close-packed ropes. Their behavior may give rise to inter-
esting features, because the strong Coulomb repulsion between electrons existing in
the isolated nanotubes is screened due to the intertube interactions between a large
number of metallic nanotubes. A superconducting transition at temperatures below
1 K has been observed in ropes made of about three hundred nanotubes[8]. Super-
conductivity seems to be also a plausible phenomenon in small-diameter nanotubes,
where the coupling of the electrons to lattice vibrations is largely enhanced[9].

The main goal in designing nanotechnology devices is to tailor the molecular
structures to achieve a given functionality. In that respect, the various geome-
tries that the nanotubes may adopt and the possibility of assembling them with



other carbon structures open the way to the construction of common electronic
devices like diodes[10], transistors[11, 12, 13, 14], memory elements[15] and logic
circuits[16, 17]. As explained below, the nanotubes may have metallic or semicon-
ducting properties depending on the way the graphene sheet is wrapped[18, 19, 20].
The nanotube structure can change along the tubule from one class to the other
by the presence of topological defects, that is, heptagonal and pentagonal rings in
the hexagonal carbon lattice[21, 22, 23]. This kind of intramolecular junctions have
shown diode-like rectifying properties[10]. Furthermore, transistors working with a
single nanotube element have been produced, either by the field-effect on semicon-
ducting nanotubes|[11, 12, 13| or by constraining single electrons to short islands
between two buckles in a metallic nanotube[14]. An alternative to these struc-
tures can be the use of Y-junctions in which two single-walled nanotubes merge
into one at a given angle[24, 25]. The response characteristics of such devices have
shown interesting properties, including nonlinear transport behavior and current
rectification[26, 27, 28, 29].

One of the challenges of the carbon nanotube based molecular electronics is the
controlled high-yield production of the relevant structures in the design of the elec-
tronic devices. The progress in the development of new techniques and the synthesis
of new structures is constant. Very promising is the formation of supramolecu-
lar assemblies in which fullerene cages are inserted in the hollow structure of the
nanotube[30, 31, 32]. It has been shown that the presence of the fullerenes leads
to a modulation of the gap in the case of the semiconducing nanotubes[33]. When
the fullerenes are disposed forming an array inside the nanotube, the hybridization
of the fullerene molecular orbitals with the states in the nanotube conduction band
gives rise to a band with mixed fullerene-nanotube character[34]. Surely the inter-
play between the properties of the carbon nanotubes and the electronic features of
the fullerenes has to give rise to new physical effects, opening the way to different
routes in the design of components in molecular electronics.

2 Metallic versus semiconducting nanotubes

2.1 Band structure of carbon nanotubes

A remarkable feature of the single-walled carbon nanotubes is that their conduction
properties depend on the helical arrangement of the hexagonal carbon rings on the
tubular structure. Thus, carbon nanotubes can be metallic or semiconducting as a
consequence of their particular geometry and, when a gap develops in the low-energy
spectrum, it also depends on the diameter of the nanotube. These properties follow
from the band structure of the tubular arrangements, which is composed of a certain
number of one-dimensional subbands depending on the thickness of the nanotube.
The conducting properties can be formally ascertained by addressing the question
of whether the Fermi level crosses or not some of the subbands. The prediction
of the metallic and semiconducting properties of the nanotubes depending on their
geometry was actually made on theoretical grounds in 1992 [18, 19, 20]. Although
the electronic properties of the nanotubes had been studied for some time, it was not
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until 1998 that their structrure was atomically resolved by using scanning tunneling
microscopy[35, 36]. In this way, it has been possible to establish experimentally the
correspondence between the conducting properties and the geometric structure of
the individual single-walled nanotubes.

Except in cases where the nanotube diameter is very small[37, 38, 39|, the band
structure of the individual nanotubes can be understood from the band dispersion
of a graphene sheet, after applying the periodic boundary conditions arising from
the winding of the hexagonal rings around the axis of the nanotube. The conduc-
tion properties can be obtained qualitatively from the hybridization of the carbon
7 orbitals, which gives rise to respective bonding and antibonding bands in the
graphite sheet. The two-dimensional Brillouin zone is an hexagon and the electron
energy-momentum dispersion E(k) takes the following form in the tight-binding
approximation[40]:

Ek) = j:t\/l + 4 cos?(V/3k,a/2) + 4 cos(V/3k,a/2) cos(3k,a/2) (1)

where ¢ is the nearest-neighbor carbon-carbon distance (&~ 0.14 nm) and ¢ is the
energy scale (= 2.5 eV) given by the matrix element between neighboring 7 orbitals.
The bonding 7 band of the dispersion relation (corresponding to the — sign in front
of the right-hand-side of Eq. (1)), has the shape depicted in Fig. 1. The cusps are
attained at the corners of the hexagonal Brillouin zone, which correspond to the
momenta
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It has been shown that, for typical nanotubes with diameter above 1 nm, the carbon
o orbitals have a weak influence on the bonding 7 band, and that the bonding o
bands appear in the spectrum at energies below ~ —2 eV [18].

When the graphene sheet is not doped by impurities or other means, each carbon
atom contributes with one electron to the above band structure which, taking into
account the spin degeneracy, turns out to be half-filled. The Fermi level is found
then at the cusps connecting the lower and upper branches of the band dispersion
given by Eq. (1), so that the graphene sheet is a remarkable two-dimensional system
which has a set of isolated Fermi points (only two of them being inequivalent) when
the carbon lattice is half-filled.

The passage from the electronic states in the graphene sheet to those allowed
in the carbon nanotubes can be made by enforcing the conditions satisfied by the
electron wavefunctions when winding around the waist of the tubule. This is the
point where the geometry of the nanotube plays a crucial role, since many different
possibilities exist characterized by the helicity of the carbon lattice on the tubular
structure. A simple instance is given by the so-called zig-zag nanotubes, in which the
graphene lattice is wrapped in the direction depicted in Fig. 2, and that receive their
name from the /\ /\/\/\ shape perpendicular to the tube axis. Another significant
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Figure 1: Representation of the first Brillouin Zone and band structure of graphene
and carbon nanotubes. (a) Dispersion of the bonding 7 band in graphene. (b) Plot
of the allowed wavevectors (vertical lines) in the first Brillouin Zone for a zig-zag
nanotube with N = 11. (c¢) Same plot as in (b) for a zig-zag nanotube with N = 12.

case correspond to the armchair nanotubes, so-called because of the pattern / \
_/\__/ \ that they display after forming the tubular arrangement with the axis
as depicted in Fig. 3.

The analysis of the zig-zag and the armchair nanotubes gives insight about the
general argument by which a single-walled nanotube can be catalogued as metallic
or semiconducting. The different subbands of a nanotube can be obtained from the
band dispersion in Eq. (1) by taking into account that the electron wavefunction
U(r) has to be single-valued after taking a close path around the tubule. Their
dependence on the position r (measured with the coordinates of the graphene sheet)

is of the form
U(r) ~ exp(ik - r) (4)

This means that the argument of the exponential has to increase by a multiple of
2w times ¢ after going once around the waist of the nanotube.

In the case of a zig-zag nanotube with lattice vector T in the direction perpen-
dicular to the axis, as shown in Fig. 2, we must have

NT, -k=2mn (5)

where N is the number of hexagons found when going around the nanotube and n is
an integer number. The above constraint traslates into the quantization condition

2T n

which gives the allowed wavevectors in a zig-zag nanotube. These correspond to
a certain number of straight lines in the Brillouin zone, that have been shown for
the particular cases of N = 11 and N = 12 in Fig. 1. Each line corresponds to a

5



tube
axis
15

Figure 2: Left: Schematic representation of the wrapping action leading to a zig-zag
nanotube. Right: Band structure of a zig-zag nanotube with NV = 11 (the energy is
measured in units of the overlap integral and the momentum in units of the inverse
lattice spacing).

one-dimensional subband for the tubular structure. In general, an undoped carbon
nanotube can have metallic properties only when there is some subband passing
by the points where the bonding and antibonding bands meet. According to the
Egs. (2) and (3) and the quantization condition (6), that only happens in the case
of a zig-zag nanotube when the number N of hexagons around the circumference
is a multiple of 3 [18, 19]. A narrow gap may open, however, due to the different
strength of the electron transfer in the direction perpendicular to the tube axis,
which leads to a shift of the Fermi points (in the %, direction) from the corners of
the Brillouin zone. If the number N is not multiple of 3, a moderate gap A opens
in the spectrum[18, 19], with a dependence on the diameter d of the form[2, 3]

A = 2ta/d (7)

This sensitive dependence of the conducting properties of the nanotubes is illustrated
by the band structure of the zig-zag nanotube with N = 11 shown in Fig. 2.

Moving now to the case of the armchair nanotubes, the periodic boundary condi-
tions imply a similar quantization condition on the component £, of the momentum,
which is now in the direction transverse to the tubule axis. Calling M the number of
lattice periods along the circumference of the nanotube, the requirement of having
single-valued wavefunctions leads to the condition

2T n
= —— 8
Yy 3aM ()

n being again an integer number. The set of allowed wavevectors corresponds to a
certain number of straight lines in the Brillouin zone, perpendicular to those found
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Figure 3: Left: Schematic representation of the wrapping that leads to an armchair
nanotube. Right: Band structure of an armchair nanotube with M = 10 (in the
same units as in Fig. 2).

in the case of zig-zag nanotubes. Now there is always a subband at the point where
the bonding and antibonding 7 bands meet, irrespective of the value that M may
take. This is shown in the band structure for M = 10 represented in Fig. 3. It
turns out therefore that all the armchair nanotubes have subbands crossing the
Fermi level, and that they remain metallic even taking into account the effects due
to the curvature of the tubule[18, 19, 20].

The geometric structures of the zig-zag and the armchair nanotubes are special
cases among all the possibilities by which the graphene sheet can be wrapped to form
the nanotubes. The arrangement of the hexagonal carbon rings may show in general
some helicity along the tubule. The construction of an helical arrangement can be
visualized by starting from the lattice as depicted in Fig. 2, and rolling up the tubule,
not in the direction of the hexagon rows, but wrapping a row of hexagons onto the
next above or below when completing the turn around the tubule. Obviously, that
operation can be also done by joining a row of hexagons with the second row, the
third, etc. above or below the starting hexagon.

The helicity can be measured then by the shift of a number m of lattice vectors
T, (defined in Fig. 2) when wrapping the graphene sheet. The degree of helicity m
and the number n of hexagons in the row of the parent zig-zag tubule characterize
completely the geometric structure of the nanotube. These numbers are given usu-
ally in the notation (n, m). Thus, the zig-zag nanotubes are represented by the (n, 0)
geometric structures, while it can be checked that the (n,n) tubules correspond to
the armchair nanotubes. Carbon nanotubes which do not have zig-zag or armchair
structure are called chiral nanotubes. In the experiments, the (n,m) structure of
the nanotube can be obtained from the measurements of the diameter of the tubule
and the chiral angle ¢ formed by the tube axis and the rows of aligned hexagons.



The arguments allowing to understand the conduction properties of the zig-zag
and the armchair nanotubes can be applied also to the general case of the chiral
nanotubes. It turns out that these have subbands crossing the K point of the
Brillouin zone when the geometric structure given by (n,m) is such that n —m is a
multiple of 3 [18, 19]. In that case, a narrow gap may open at the Fermi level due to
the same curvature effects invoked for the zig-zag nanotubes. For the rest of chiral
nanotubes, a moderate gap opens up in the spectrum, with a dependence on the
nanotube diameter that follows the same law predicted for the zig-zag nanotubes.

2.2 Experimental measurements

The predictions regarding the sensitivity of the conducting properties on the geo-
metric structure of the carbon nanotubes have been confronted in the experiments
reported in Refs. [35] and [36]. In both experiments, individual single-walled nan-
otubes have been produced with the technique of laser vaporization, being deposited
afterwards on a Au(111) substrate. In Ref. [36], measurements have been also re-
ported on single-walled nanotubes at the surface of a rope. Topographic images
of the individual nanotubes have been obtained at constant tunnel current in a
scanning tunneling microscope, leading to the resolution of the hexagonal structure
of the carbon rings. This has made possible to determine the degree of helicity
which, together with the knowledge of the nanotube diameter, allows to identify the
nanotube in the above catalogue given in terms of the (n, m) numbers.

Within the same experimental setting, scanning tunneling spectroscopy has been
performed, in which the current I through the vacuum barrier between the STM
tip and the nanotube is recorded as a function of the bias voltage V' applied to the
sample. This provides important information about the electronic structure, since
the differential conductance dI/dV is proportional to the density of states in the
nanotube. More precisely, the normalized differential conductance (V/I)(dI/dV)
seems to provide a good representation of the local density of electronic states[41].
From the measurements carried out in Refs. [35] and [36], it has been possible to de-
termine the position of the peaks corresponding to the edges of the one-dimensional
conduction and valence bands and the consequent gap in the semiconduting nan-
otubes.

Fig. 4 contains one of the atomically resolved images of single-walled nanotubes
reported in the experiment of Ref. [36]. As discussed there, the dark dots correspond
to hexagonal carbon rings, and the degree of helical arrangement can be easily
discerned in the images. The angle formed between the rows of hexagons and the
tube axis determines the chiral angle. The measured values of the angle and the
diameter are consistent with the structure of a (14, —3) nanotube, which should
be a moderate gap semiconductor. The spectroscopy measurements show indeed a
very small current for bias voltages between —300 and 400 mV. The peaks of the
normalized differential conductance out of that range correspond to the edges of the
one-dimensional subbands. As reported in Ref. [36], a gap can be estimated for the
mentioned nanotube of the order of &~ 750 meV. In general, in the measurements
carried out in the semiconducting nanotubes the current seems to be very small but
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Figure 4: (a) Scanning tunneling microscope image of isolated single-walled nan-
otubes. As mentioned in the reference below, the black arrow highlights the tube
axis, and the dashed line indicates the zigzag direction. (b) Plot of the normal-
ized conductance and -V values (inset) measured at the four locations marked in
the carbon nanotube in (a). Reprinted with permission from T. W. Odom, J.-L.
Huang, P. Kim and C. M. Lieber, Nature 391, 62 (1998). Copyright 1998 Macmillan
Magazines Limited.

nonvanishing within the gap, but this may be explained by the existence of tunneling
through the nanotube to the gold substrate.

The majority of the measurements reported in Refs. [35] and [36] have deter-
mined the existence of moderate gaps, consistent with the geometric structure of
semiconducting nanotubes. The experimental observations of the gap A fit very well
to the dependence on the diameter given on theoretical grounds by Eq. (7). The
parameter ¢ which gives the best fit is very close to the nearest-neighbor overlap
energy obtained from calculations in a single graphene sheet, t = 2.5 eV [42].

In the rest of the instances, the measurements of the differential conductance
have not shown peaks in the spectra over a wider range of energies, larger than
1.5 eV. The manifest nonvanishing value of the conductance, together with its
smooth behavior, is the signature of the metallic character in the nanotubes. When
this happens, the geometric structure of the nanotubes has been shown to correspond
either to armchair nanotubes or to chiral nanotubes with the helicity suitable for
metallic behavior. It has been mentioned above that, in the latter case, a small gap,
of the order of ~ 0.01 eV, should open at the Fermi level by effect of the curvature of
the nanotube. Such a gap, however, has been only observed through high-resolution
measurements of the conductance in zig-zag nanotubes of (3n,0) type[43]. It is
believed that, in the case of the chiral nanotubes of (3n+m, m) type, the small-gap
feature tends to be even tinier[44] and its observation may be then precluded by the
instrumental noise.

The use of tunneling spectroscopy has given then important information about



the band structure of the carbon nanotubes. It has shown that they can be con-
sidered as molecular wires. The proportion of the semiconducting nanotubes in the
whole set considered in the experiments seems to agree with the ratio of two thirds
predicted from pure theoretical arguments. Another important point is that the
measures taken on metallic nanotubes in a rope are similar to those on isolated
metallic nanotubes, as reported in Ref. [36], what seems to imply a weak intertube
coupling of the nanotubes within a rope.

The fact that a slight variation in the geometric structure of a carbon nanotube
may produce important changes in the conducting properties opens the possibility
to build metal/semiconductor or semiconductor/semiconductor junctions in a single
molecule. This requires changing the helicity within the same carbon nanotube,
which can be achieved by introducing topological defects like combinations of hep-
tagon and pentagon carbon rings in the nanotube lattice[21, 22, 23]. A pentagonal
ring induces some local curvature in the hexagonal lattice, which can be superposed
on a plane and has therefore no intrinsic curvature. The curvature of the pentagonal
ring has to be counterbalanced with the opposite induced by an heptagonal ring in
order to recover the tubular structure.

The combination of adjacent pentagonal and heptagonal rings has been proposed
in Ref. [21] to produce changes in the chirality of a nanotube from a (n, m) struc-
ture to another of (n £ 1, m F 1) type. The particular case of a junction between
(8,0) and (7,1) nanotubes has been analyzed, studying in detail the change in the
band structure across the interface. This would be a typical instance of semicon-
ductor/metal junction, and the evolution of the gap along the nanotube has been
established theoretically by computing the local density of states. The example of
a semiconductor /semiconductor junction formed by (8,0) and (5, 3) nanotubes has
been also studied, stressing the appearance of interface states in the gap from the
presence of three pentagon-heptagon defects[21].

Experimental observations of the carbon nanotube intramolecular junctions have
been already carried out[10, 45]. In the experiments reported in Ref. [45], the atomic
structure of the nanotube segments at each side of the junction has been resolved
by using scanning tunneling microscopy. This has made also possible to study the
evolution through the junction of the different features in the local density of states.
On the other hand, the experiments presented in Ref. [10] have investigated the
peculiar transport properties of the intramolecular junctions.

In atomic force microscope images, the intramolecular junctions appear as kinks
in individual carbon nanotubes, as illustrated in Fig. 5 taken from Ref. [10]. The
large angle formed by the two segments at each side of the junction requires that the
heptagon and pentagon rings are located at opposite sides of the nanotube section.
By employing the electrodes shown in the figure, it has been characterized that the
nanotubes in Fig. 5(a) give rise to a metal/semiconductor junction, while those in
Fig. 5(b) provide an example of metal/metal junction[10].

The conductance through the kink is very different for the two samples shown
in Fig. 5. In the sample shown to the left, the resistance at zero bias voltage is
extremely large, higher than 250 G2[10]. The current I measured as a function of
the bias voltage V' (I-V characteristics) displays a highly nonlinear behavior. With
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Figure 5: (a),(b) Atomic force microscope images of intramolecular junctions of car-
bon nanotubes. The pads seen in the figures correspond to titanium-gold electrodes
embedded in the SiOs substrate, with the nanotubes placed on top of them. (c)
Model of a kink created by the combination of the pentagonal and the heptago-
nal ring marked in the figure, and that gives rise to a junction between armchair
and zigzag nanotube geometries. Reprinted with permission from Z. Yao, H. W.
Ch. Postma, L. Balents and C. Dekker, Nature 402, 273 (1999). Copyright 1999
Macmillan Magazines Limited.

no voltage applied to the gate, the current shows a small increase when a negative
bias voltage is applied to the electrodes, while it shows a sharp increase for a positive
voltage above 2 V (applied to the upper electrode)[10]. The kink induces therefore
a rectifying behavior in the current, which has led to propose that it could be used
as a molecular device resembling a diode. It has been stressed in Ref. [10] that
the I — V characteristics become more asymmetric as a gate voltage is applied to
the substrate. This has been presented as an evidence that the lower segment of
the nanotube in Fig. 5(a) is semiconducting. The upper segment is metallic in any
event, since its resistance of 110 k{2 (measured at room temperature) does not show
dependence on the gate voltage[10].

It has been established that the kink in Fig. 5(b) produces a metal/metal in-
tramolecular junction[10]. The behavior of its conductance, however, cannot be
understood in the framework of the single-electron picture described above, which
does not take into account the effects of the Coulomb interaction. This leads to a
strong correlation between the electrons in materials with reduced dimensionality.
The features introduced by the electron-electron interaction in the behavior of the
carbon nanotubes are reviewed in the sections below.
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Figure 6: Log-log plot of the temperature dependence of the conductance, measured
in the two nanotube segments and through the kink shown in Fig. 5(b). The straight
lines correspond to the best fit to a power law for each set of data. Reprinted with
permission from Z. Yao, H. W. Ch. Postma, L. Balents and C. Dekker, Nature 402,
273 (1999). Copyright 1999 Macmillan Magazines Limited.

3 Transport properties of carbon nanotubes

3.1 Luttinger liquid behavior

The metallic carbon nanotubes show transport properties that deviate remarkably
from those of the conventional two and three-dimensional metals. This is actully a
consequence of their behavior as genuine one-dimensional conductors. Their trans-
port properties cannot be understood from the standard Fermi liquid picture for
interacting electrons, in which it is assumed that the elementary excitations are
quasiparticles which behave similarly to free electrons, with just some characteristic
parameters (like the effective mass) renormalized by the interaction. The failure to
apply that Fermi liquid picture already anticipates the kind of exotic effects that
may be found in molecular electronics, as well as it was anticipated on theoretical
grounds many years ago that a new paradigm —the Luttinger liquid— should be
used to describe the interacting electrons in one-dimensional systems|[46, 47].

The observation of unconventional transport properties has been reported in
Ref. [10], for instance, regarding the sample shown in Fig. 5(b). The two-terminal
conductance G as a function of the temperature is represented in Fig. 6, from the
mentioned reference, where it can be appreciated the behavior in the two differ-
ent segments and through the metal/metal junction. It is remarkable the strong
suppression of the conductance as the temperature decreases in the latter case. In
all the instances, the behavior can be fitted very well by a power-law dependence
G(T) < T“ in a fairly large range of temperatures. The exponents corresponding to
the upper and the lower segment of the sample are o = 0.34 and 0.35, respectively,
and the value obtained through the kink is oo = 2.2.
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As remarked by the authors of Ref. [10], the fact of producing contacts between
the electrodes and the nanotube with sufficiently low resistance (about or smaller
than 100 k) in their experiment) seems crucial to observe a definite behavior of
the conductance. The suppression for decreasing temperature could be attributed,
in principle, to activated transport over the tunnel barrier created by each contact.
This would lead, however, to a dependence G(T) x exp(—A/kgT), in terms of the
barrier height A, which cannot fit well the experimental data. The measurements of
the conductance refer therefore to a property intrinsic of the carbon nanotube. This
has to do with the effects of the electronic interaction, since the large suppression
of the conductance through the junction cannot be accounted for by a model of
noninteracting electrons with topological defects[48].

The behavior of the tunneling conductance is actually related to that of the
density of states p(E) at energies close to the Fermi level. It will be shown below
that the density of states has a power-law dependence p(EF) o< E* in the framework
of the Luttinger liquid theory, with the exponent « being a function of the interaction
strength[46, 47]. The fact that p(E) goes to zero at the Fermi level is a consequence of
the absence of low-energy excitations with the properties of noninteracting electrons.
The observation of the power-law dependence of the tunneling conductance can be
considered then as another manifestation of the carbon nanotubes as genuine one-
dimensional conductors.

The data in Fig. 6 show that the Luttinger liquid behavior may extend over
a wide range of temperatures, up to 300 K. At sufficiently low temperatures, the
power-law behavior of the tunneling conductance is modified by the effect of the
Coulomb blockade[49], which is also described below in detail. That effect is ob-
servable in the experiments when the thermal energy (i.e. the temperature times
the Boltzmann constant kg) becomes low enough to be comparable to the discrete
energy needed to put one more electron on the finite dimensions of the system.
This quantity is the so-called charging energy E., which is given in terms of the
electron charge e and the total capacitance C' of the nanotube by the expression
E. = €?/2C. The charging energy can be estimated as a few meV in the typical
single-walled nanotubes (with lengths of the order of 1 um) used in the experiments.

Evidence of power-law behavior has been also obtaind from the measurements of
the differential conductance dI/dV, in individual single-walled nanotubes[10] as well
as in ropes of nanotubes[50]. Fig. 7 illustrates the results of the experiments in ropes
reported in Ref. [50]. For values of the bias voltage applied to the rope such that
eV <« kgT, the effect of the temperature prevails and the differential conductance
recovers the voltage-independent value given by G(T'). At higher bias voltage, the
experimental values of dI/dV show a well-defined linear behavior in log-log scale
as a function of the bias voltage at different temperatures. The exponent giving
the best fit for the power-law dependence dI/dV o« V¢ is o = 0.36 [50]. It is also
remarkable that, upon scaling of the differential conductance by the values of T*
as dictated by the behavior of a tunnel junction[51, 52], the experimental data for
the different temperatures fall into a unique universal curve when represented as a
function of the scaled variable eV/kgT [50].

The exponents obtained for the transport through the tunnel junctions created by
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Figure 7: Log-log plot of the differential conductance in a rope, measured at dif-
ferent temperatures and scaled by 7% in each case. The inset shows the curves of
differential conductance as a function of the bias voltage, for decreasing values of the
temperature (from top to bottom). Reprinted with permission from M. Bockrath,
D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents and P. L. McEuen,
Nature 397, 598 (1999). Copyright 1999 Macmillan Magazines Limited.

the contacts in the ropes and in the individual nanotubes are in very good agreement.
From this fact, one can obtain significant information about the physical properties
of the ropes. The agreement is consistent, for instance, with the results establishing
the large suppression of the tunneling amplitude between the different nanotubes
of a rope[53, 54]. This means that the only relevant intertube coupling arises from
the Coulomb interaction. Consequently, it can be concluded that the transport
properties measured in individual nanotubes as well as in ropes are dominated by
the two tunnel junctions in the circuit, which give rise to the observed power-law
behavior. In the measurements through the kink reported in Ref. [10], the reason
for the enhanced decrease of the conductance has to be found in the additional
suppression of the tunneling of electrons between the two ends of the nanotube
segments, according to the Luttinger liquid picture.

From a theoretical point of view, the clarification of the Luttinger liquid behavior
of the metallic carbon nanotubes has been accomplished in Refs. [55] and [56]. The
analyses carried out there assume that the repulsive Coulomb interaction between
electrons is dominant in the single-walled carbon nanotubes. The discussion focuses
on the low-energy regime in which only the four linear branches near the Fermi level
(as observed in the band structure of Fig. 3 for instance) contribute to the electronic
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properties. When two electrons interact in the nanotube, there is a large number
of possible processes, which can be classified depending on whether the electrons
scatter near the same Fermi point or not, or whether the electrons shift from one
Fermi point to the other. One of the main conclusions drawn in Refs. [55] and
[56] is that the processes in which the electrons remain in their respective linear
branches after scattering are largely dominant. The interaction strength of the rest
of processes (the so-called backscattering and Umklapp interactions) is suppressed
in general by a factor inversely proportional to the number of subbands in the
nanotube[55, 56].

The hamiltonian H governing the low-energy electron dynamics can be approxi-
mated then by writing the interactions of the form density times density which arise
from the Coulomb repulsion,

H = —hUF/depra p’l‘o’ )
—}—§/dk Z pm(k) V(k) psa’(_k) (9)

7,8,0,0"

pro (k) being the electronic density in the linear branch r for spin o, and V' (k) being
the Fourier transform of the Coulomb potential. The kinetic term in (9) gets the
appropriate dimensions from the Fermi velocity vy of the electrons and the Planck
constant fi(= h/2m).

In one spatial dimension, the density operators can be rescaled to satisfy canoni-
cal commutation relations characteristic of boson operators[46, 47]. The hamiltonian
(9) can be diagonalized in terms of these bosonic objects. For this reason, the states
with well-defined energy do not correspond to the original electrons, but to collective
excitations that represent physically wave-like modulations of charge or spin.

The transformation diagonalizing the hamiltonian (9) is a pseudorotation de-
termined by the parameter u = 1/4/1 + 8V /hvp [46, 47|, where a suitable average
value of the interaction strength V' is assumed. All the properties of the Luttinger
liquid are completely characterized by the parameter pu. Thus, the density of states
p(E) follows at low energies the power-law behavior

p(E) x E* (10)

with an exponent apu = (1 — p~' — 2)/8 for the density of states measured in the
bulk of the liquid[55, 56]. In the case of an open one-dimensional system, the density
of states is substantially smaller at the ends of the liquid, having then a power-law
behavior with an exponent aenq = (! — 1)/4 [56].

From the measurements of the conductance when tunneling into the bulk of the
nanotube, it turns out that the best fit of the experimental data corresponds to a
Luttinger liquid parameter p around 0.22 [10]. This is the signature of a significant
electron-electron repulsive interaction in the single-walled nanotubes, and indeed
that value for p agrees well with the theoretical estimate obtained by assuming that
the Coulomb interaction is dominant in the individual nanotubes[55, 56]. An impor-
tant consistency check is that the exponent that can be predicted for the tunneling
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into the end of the nanotube accounts for the large suppression of the conductance
through the kink observed in Ref. [10]. Taking p ~ 0.22, the exponent ae,q becomes
~ 0.9. For the tunneling through the metal/metal junction, the conductance has to
be proportional to the product of the tunneling density of states at each end of the
nanotube segments. Thus, the corresponding exponent has to be twice the value of
Qiend, Which is close to the estimate (= 2.1) from the fit of the experimental data[10].
Overall, there is therefore strong evidence that the Luttinger liquid picture applies
to the tunneling processes in the single-walled nanotubes.

3.2 Ballistic transport properties

The experimental signatures of Luttinger liquid behavior are consistent with another
remarkable observation in the carbon nanotubes, as it is the ballistic transport.
This means that the charge can move along the nanotube in such a way that it
is not disturbed by inelastic collisions. This behavior as a quantum conductor is
opposite to the classical behavior in which the conduction takes place by diffusion
of the electrons with a certain mean free path. One of the consequences of ballistic
transport is that there cannot be dissipation of energy inside the ballistic conductor,
and that the heat produced has to appear at the leads of the ballistic element.
Moreover, another important property is that the conductance has to be quantized
in units of Gy = 2¢?/h, with each mode in the waveguide contributing with one of
these quanta to the conductance[57, 58, 59].

The quantization of the conductance has been observed at room-temperature
in fibers of multi-walled nanotubes. The peculiarity of the experiment reported in
Ref. [7] is that the fibers have been used in place of the tip of a scanning probe
microscope. This has allowed to raise and lower the fiber inside a liquid metal,
used as a second contact to close the circuit. By dipping the fiber into the metal,
the current has been recorded as a function of the length of the fiber within the
liquid. This has shown that the conductance increases by steps whose magnitude
is very close to the quantum of conductance Gy = 2e*/h. The appearance of each
step corresponds to the point at which one more multi-walled nanotube becomes in
contact with the liquid metal[7].

The measurements reported in Ref. [7] provide a strong indication of ballistic
transport in the multi-walled samples, since they have shown that the conductance
does not decay over a variation of about 200 nm of the nanotube length submerged
in the liquid. Supporting the same conclusion, there is also evidence that the heat
produced by the current cannot be dissipated in the nanotubes. It has been es-
timated in Ref. [7] that the current densities produced in the experiment can be
higher than 107 A cm™2. These values are so large that, if the corresponding dissipa-
tion of energy had to take place within the fiber, it would give rise to a temperature
well above that needed to burn the nanotubes[7].

The quantization of the conductance in the multi-walled nanotubes also sheds
light on their internal structure. Each individual metallic nanotube has two modes
contributing to the conduction properties, irrespective of the diameter of the tubule.
This means that each metallic shell of a multi-walled nanotube could in principle
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contribute with two quantum units to the conductance, what is not observed in the
experiment of Ref. [7]. This can be explained by the fact that only the outer shell
participates in the conduction, what is plausible since, even in the event that the
next layer were metallic, the resistivity in the direction perpendicular to the tubules
has to be very large[3]. It still remains to be understood why the step observed in the
conductance is given by Gy, instead of 2Gy. This value accounts for the contribution
of the two spin projections and the two propagating modes of the nanotubes, what
suggests that the contribution of some of these degrees of freedom may be missing
in the multi-walled samples[60].

The observation of ballistic propagation seems to require very pure nanotube
samples and, indeed, there is evidence of the structural perfection of the multi-
walled nanotubes used in the experiments of Ref. [7]. When the degree of purity
is not so high, the ballistic propagation may be altered by the interactions with
the impurities or defects in the samples. In the experiments presented in Ref. [61],
for instance, the transport properties of several single-walled nanotubes with large
intrinsic resistance have been measured, showing a highly nonlinear behavior upon
variation of the length along the nanotube. For a separation between the contacts
of the order of a few hundred nanometers, the resistance displays a very smooth
dependence on the length of the nanotube segment. This has been interpreted as
the signature of ballistic transport in the single-walled nanotubes[61]. Over larger
distances, the resistance shows a steep increase, which is incompatible with Ohm’s
law in any event since this would imply a linear dependence of the resistance on the
length of the wire. It has been argued that the overall behavior can be only consistent
with a situation in which the transport is dominated by the elastic scattering with
an increasing number of defects, which would give rise to the observed decrease of
the probability amplitude over the length of the nanotube[61].

3.3 Low-temperature properties

In a different kind of experiments, it has been established that the electron wave-
functions can be extended over lengths of several microns in the single-walled nan-
otubes, when the contitions are such that the thermal energy is smaller than the
single-particle level spacing in the tubes[4, 5]. These low-temperature experiments
are measuring therefore a regime different to that probed by the experiments re-
porting the Luttinger liquid behavior, where the interaction between a manifold of
single-particle levels is manifest.

The separation AE between the single-particle energy levels is dictated by the
length L of the nanotube according to the expression

AE = hop /2L (11)

where vy is the Fermi velocity (=~ 8 x 10° ms™!). For typical lengths of a few
microns, the separation between the discrete energy levels is below 1 meV. When
the thermal energy is below that value, single electrons can be added to the nanotube
by resonant tunneling, that is by adjusting the bias voltage applied to the leads
so that the current increases by one step each time that a new molecular orbital
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becomes available[5]. Similarly, a series of sequential peaks can be observed in the
conductance when the number of electrons is varied with the voltage applied to the
gate[4]. The fact that the single-particle level splitting can be resolved by looking
at the current steps working at suitably low temperatures is the signature that the
electrons occupy molecular orbitals that correspond to delocalized electronic states.

Moreover, direct evidence of the extended character of the electron states has
been obtained by imaging the electron wavefunctions in short nanotubes (with length
L = 30 nm) by scanning tunneling microscopy[62]. By measuring the tunneling con-
ductance along the nanotube, it has been observed the spatial modulation corrre-
sponding to the electron probability amplitude, finding agreement with the expected
wavevectors of the quantized states in the nanotube. The electron wavefunctions of
several discrete molecular levels have been discerned with this technique[62].

Another remarkable observation, related to the existence of extended electron
wavefunctions, refers to the oscillatory behavior of the magnetoresistance of multi-
walled nanotubes[63]. When these are aligned with the direction of the magnetic
field, it has been shown that the resistance has modulations as a function of the
enclosed flux. This is consequence of the fact that the phase of the electron wave-
function is modified by the presence of the magnetic field (the so-called Aharonov-
Bohm effect). When the electrons encircle the nanotubes in opposite directions, a
phenomenon of quantum interference takes place, which reflects in the behavior of
the resistance[63].

The absence of localization of the electronic states in the single-walled nanotubes
may be surprising at first sight. On the one hand, there is the well-known fact that
a single impurity has the ability to disrupt the conduction in a one-dimensional
system[64, 65]. It has been shown, however, that the case of the nanotubes is special
as the electrons feel the effect of impurities averaged over the circumference of the
tube[66]. Thus, the metallic nanotubes may have very good conduction properties,
with delocalized states over lengths of 10 ym or more for the nanotubes produced
in the experiments. Furthermore, that localization length has to be an increasing
function of the diameter of the nanotube[66].

The picture that emerges from the low-temperature experiments on transport
is that the quality of the contacts used for the nanotubes determines the type of
experimental observation. In some metallic nanotube devices, the resistance mea-
sured at room-temperature is close to the theoretical lower limit of =~ 6.5 k{2, given
by the inverse of the conductance 2Gy that would correspond to two modes prop-
agating ballisticaly along a single-walled nanotube. In these cases, most part of
the resistance has to be attributed to the nanotube, while the contacts between the
metallic electrodes and the nanotube are nearly perfect. At low enough tempera-
tures such that the thermal energy is below the single-particle level spacing within
the nanotube, the electrons pass through the interface with little reflection and the
experimental observations account for the propagation intrinsic to the nanotubes.

In the experiments reported in Ref. [6], a number of nanotube devices were
measured with room-temperature resistances below 15 k(). In these samples the
average value of the conductance has been found always between Gy and 2G, the
departure from the latter value being attributed to the scattering of the electrons at
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the nanotube-electrode interface. Moreover, the two-dimensional plot of the differ-
ential conductance dI/dV as a function of the bias voltage V' and the gate voltage
V, displays a quasiperiodic pattern of dips and peaks. It has been shown that the
oscillation period scales appropriately with the inverse of the nanotube length, what
supports that the observed pattern is due to the quantum interference of the elec-
tron waves after being scattered at the interfaces[6]. This shows the significance of
taking into account the quantum coherence, represented by the extended character
of the electron wavefunction, when designing low-temperature electronic devices at
the molecular level.

Opposite to the cases of devices with almost transparent contacts, there are
instances where the transmission between the nanotube and the metallic leads is
dominated by much more suppressed tunneling processes. In these cases, the ex-
perimental observations give a measure of the difficulty that the current finds to go
through the tunnel junction. In certain circumstances, it is possible to control the
tunneling of single electrons into the nanotube, entering a regime with new physical
properties which is described in the next section.

4 Coulomb blockade and quantum dot behavior

4.1 Carbon nanotubes as single-electron transistors

One of the main interests in the technological application of the carbon nanotubes
arises from the possibility of developing electronic devices made of a single molecule.
Semiconducting nanotubes have been proposed to act as field-effect transistors in
Refs. [11] and [12]. In these devices, source and drain electrodes are attached
to the semiconducting nanotube, while this is separated from the substrate (the
gate electrode) by an oxide layer which acts as a dielectric. The capacitive coupling
between the nanotube and the substrate is what makes possible to change the density
of charge carriers and the conduction properties in the nanotube by varying the
voltage of the gate.

Unlike field-effect transistors, however, single-electron devices are based on the
intrinsic quantum-mechanical character of the tunnel effect. In the case of metallic
nanotubes, the development reported in Ref. [14] is that the electrons can be con-
fined in short islands between two buckles of the tubule, so they can be added one
by one by suitable variations of the voltage applied to the external gate.

The technique applied in Ref. [14] consists of using the tip of an atomic force
microscope to press the nanotube against the substrate. The tip is then moved
until the nanotube is strongly bent. In this way a buckle is created in the tubular
structure, leading to a tunnel barrier for electron transport in a metallic nanotube.
Two of these buckles can be arranged in series in an individual metallic nanotube,
in order to study the transport properties through the two tunnel barriers[14]. One
of the structures which have been produced with this technique can be observed in
Fig. 8. The short nanotube segment that appears there between the buckles has a
length of the order of 25 nm.
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Figure 8: Atomic force microscope image of a short nanotube island between two
buckles, formed by manipulation with the atomic force microscope tip. Image cour-
tesy of Cees Dekker, Delft University of Technology.

When the tunneling of the electrons takes place into a short nanotube island, it
costs a relatively large energy to add a single electron between the tunnel barriers.
This is the well-known effect of Coulomb blockade[49]. On the one hand, there is the
energy needed to overcome the electrostatic repulsion between the electrons which
are confined in such a reduced dimension, the so-called charging energy E.. As
pointed out above, this is given by the expression E, = ¢?/2C, in terms of the total
electrostatic capacitance C' [49]. On the other hand, each new electron added is
placed in the first unoccupied level, what requires to spend an energy corresponding
to the separation AE between quantized levels. That energy difference is inversely
proportional to the length L of the island, according to the already quoted expression
AE = hvp/2L (or AE = hvp /AL if the degeneracy between the two different low-
energy modes in the metallic nanotubes has been lifted). Altogether, the energy
needed to add an electron to the island is the sum of the two contributions, the
so-called addition energy[67]

Eadd = 62/0 + AFE (12)

For the short nanotube segments created with the technique reported in Ref.
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[14], the charging energy and the level spacing AFE have comparable magnitudes,
and they give rise to an addition energy E,qq of the order of 0.1 eV, which is
considerably larger than the thermal energy kg7 at room temperature. For that
reason, the transport properties resulting from the addition of single electrons to
the island can be observed without resorting to the use of low temperatures. The
number of electrons transferred between the two buckles is controlled by varying the
gate voltage applied to one of the substrates, capacitively coupled to the nanotube,
what allows to lower the successive empty energy levels of the nanotube island down
to the Fermi level in the outer nanotube segments[14].

The single-electron transport properties are distinctively observed in the mea-
surements of the differential conductance dI/dV through the tunnel barriers re-
ported in Ref. [14]. The effect of Coulomb blockade gives rise to typical patterns in
the intensity plot of the differential conductance as a function of the bias voltage V'
applied to the electrodes and the voltage V applied to the external gate. At fixed
gate voltage, a gap can be generally observed in the measures of dI/dV as a function
of the bias voltage, corresponding to the region where that is not large enough to
reach the first unoccupied level within the island. At some values of V, the gap
closes, what marks the points at which the first empty level in the region between
the tunnel barriers is aligned with the Fermi level outside the island. This produces
a typical pattern of consecutive diamond-like regions with suppressed conductance
in the intensity plot of the differential conductance in the (V,, V') plane[14].

An illustration of the diamond-shaped regions (although corresponding to a dif-
ferent experiment reported in Ref. [68]) is given in Fig. 9. The dark diamonds
correspond to the regions where the differential conductance is suppressed. In each
diamond the number of electrons in the nanotube segment is fixed, while it increases
by one unit when shifting from a diamond to the next one. On the other hand, the
addition energy E,qq can be obtained from the height in bias voltage of the largest
diamond, since that is the voltage required to establish the conduction through the
nanotube segment. In the case of the short island of Ref. [14], the addition energy
is Faqq ~ 120 meV. The separation of the energy levels has been estimated as
AFE =~ 38 meV, from where a value E. ~ 41 meV has been obtained for the charging
energy of the short island[14].

It turns out that, for the nanotube device described in Ref. [14], the level separa-
tion AE and the charging energy E. have comparable magnitudes, and both of them
are well above the thermal energy kg7 corresponding to room temperature. The be-
havior of the conductance at lower temperatures has been also studied in Ref. [14],
reaching another important conclusion. The conductance of the nanotube follows
a clear power-law dependence with decreasing temperature, pointing at a Luttinger
liquid behavior of the kind already observed in Refs. [10] and [50]. It has been
remarked that the exponents measured for that dependence do not correspond to a
picture in which the transport proceeds with the sequential, independent tunneling
through the two barriers that form the nanotube device. Instead, it has been shown
that the data can be fitted with the exponent appropriate for correlated tunneling,
in which the electrons propagate coherently through the nanotube island[14]. The
corresponding value found for the parameter measuring the interaction strength,
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u = 0.23, is in very good agreement with the earlier estimates from Luttinger liquid
behavior in carbon nanotubes[10, 50].

4.2 Quantum dot behavior

Effects related to the confinement of the electrons in a reduced dimension have been
also observed in multi-walled nanotubes. In this case, the experiments reported in
Ref. [68] have been realized at temperatures reaching values down to 280 mK. Such
small temperatures are needed to discern charging energies and single-particle level
spacings which range below 1 meV for multi-walled nanotubes with typical lengths
of a few microns.

The experimental measurements of the differential conductance carried out in
Ref. [68] are represented by the intensity plot of Fig. 9. The dark regions correspond
to lower values of the differential conductance, and it can be clearly seen that they
form a sequence of diamonds as the gate voltage increases. There seems to be
periodicity in the pattern formed by a large diamond and three consecutive smaller
ones. Recalling that the number of electrons in the nanotube is increased by one unit
from one diamond to the next and that the height of the diamond gives the energy
required to add one electron, the observed pattern points at a four-fold degeneracy
of the electronic levels in the multi-walled nanotube[68]. The height of the large
diamond should correspond to the addition energy F,qq = €?/C + AE, as in the
measurement of the short island reported in Ref. [14]. The size of the smaller
diamonds should give a measure of the charging energy alone, with the electrons
being placed there in the same single-particle level[68].

The four-fold degeneracy is in agreement with the expected band structure of a
metallic nanotube, in which two subbands cross at the two Fermi points of the one-
dimensional structure. It may be surprising, however, to find that only two gapless
modes contribute to the conduction properties in the multi-walled nanotubes. In
general, these are significantly hole doped by the environment, and the Fermi level
in the outermost tubule crosses several different subbands[69]. It may well happen
to have an outer shell which is semiconducting, so that for appropriate choices
of the gate voltage it may not contribute to the conductance of the multi-walled
nanotube. As explained in Ref. [68], this seems to be the case of the experimental
sample exhibiting the sequence of diamonds in the differential conductance. It has
been observed that such a sequence appears for suitably large values of the gate
voltage. According to the arguments given in Ref. [68], the features observed in
the conductance should reflect the metallic properties of the tubule next to the
outermost shell, as that nanotube would not be affected by the external doping.

As remarked above, the height of the smaller diamonds in the intensity plot
of the differential conductance gives a measure of the charging energy E.. For the
multi-walled nanotube sample considered in Ref. [68], the estimate is F, &~ 0.4 meV.
From the value of the addition energy, it turns out that AE =~ 0.8 meV [68]. As
explained in the preceding section, the level spacing arises from the quantization
of the electron states in the finite length of the nanotube. It has been observed
in Ref. [68] that the estimated value of AE corresponds to the propagation along
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Figure 9: Intensity plot of the differential conductance of a multi-walled nanotube as
a function of the bias voltage V4 and the gate voltage V,. The average conductance
is of the order of ~ 2e%/h. According to the reference below, AE,q, U., and 0F
denote the addition energy, the charging energy, and the single-electron level spacing,
respectively. Reprinted from M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Igbal
and C. Schénenberger, Phys. Rev. Lett. 88, 156801 (2002). Copyright 2002 by the
American Physical Society.

the whole length of the nanotube (& 2.3 pm), rather than to the distance between
the electrodes (= 300 nm). It has been argued that this further supports the idea
that the outermost shell does not participate in the conduction of the multi-walled
nanotube[68]. The quantization properties over the nanotube length show, as well
as in the individual single-walled nanotubes, that the electron wavefunctions can be
extended over large distances (above ~ 1 um) due to the weak influence of disorder
with increasing diameter size[66].

Another physical effect reported in Ref. [68] refers to the behavior of the spin of
the states with different electron number. By studying the behavior of the conduc-
tance under a magnetic field perpendicular to the tubules, it has been found that
the spin follows the sequence 1/2,0,1/2,0..., upon adding one more electron each
time to the nanotube. This can be explained if pairs of electrons have antiparallel
spins, leading to the change from spin 1/2 for an odd number of electrons to a van-
ishing value for an even number[68]. In general, the Coulomb repulsion between two
electrons is minimized if they can be placed in degenerated orbitals, allowing them
to have parallel spins[70]. This rule is not followed in the the multi-walled nanotube
considered in Ref. [68], what has been interpreted there as a signal that the per-
fect degeneracy between the modes of the two low-energy subbands in a metallic
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nanotube is spoiled in the experimental sample.

Moreover, it has been found in Ref. [68] that the differential conductance in-
creases in the regions with an odd number of electrons as the temperature de-
creases below 1 K. This has been regarded as a manifestation of the Kondo effect,
which deals in general with the properties of a static spin surrounded by delocalized
electrons[71, 72]. In the Kondo system there is an energy scale, given by the so-called
Kondo temperature, below which the itinerant electrons are able to screen the static
spin, with a concomitant increase of the conductance. The Kondo temperature gives
therefore a measure of the binding energy of the singlet state formed by the screen-
ing effect. According to the authors of Ref. [68], the coupling between the spin of
the nanotube and the electrons in the leads is what gives rise to the formation of
the singlet state and the increase of the conductance through the nanotube.

The carbon nanotubes appear then as ideal systems to study the properties of
electrons confined in a very reduced spatial dimension. This confinement into so-
called quantum dots can be caused by the presence of the own electrodes acting as
tunnel barriers. It has been also proposed that the arrangement of two consecutive
kinks made from topological defects (i.e. from the combination of pentagon and
heptagon rings) can be used to lock the electrons in short nanotube segments[73]. It
has been already shown experimentally that the resonant electron scattering between
simple (nontopological) defects gives rise to the formation of intratube quantum
dots, with conductance patterns similar to that shown in Fig. 9 [74]. The charge
states in the quantum dots can be actually imaged with scanned gate microscopy
and electrostatic force microscopy, what may give interesting spatial information
about the physical effects involved[75].

5 Superconducting correlations in carbon nanotubes

5.1 Proximity-induced superconductivity

There have been several experiments revealing the existence of superconducting
correlations in the carbon nanotubes. These observations have taken the form of a
drastic drop in the resistance of the nanotube samples below certain temperature.
In one of the most remarkable experiments, reported in Ref. [76], it has been shown
that a rope of carbon nanotubes is able to carry an electric current with zero volt-
age drop, when embedded between superconducting contacts. The measurement, of
that so-called supercurrent implies therefore a vanishing resistance of the conduc-
tor. The experiment provides a realization of the proximity effect, by which the
electronic properties of a normal metal change drastically when placed in contact
with a superconductor[77, 78]. In the latter, there is no sign of electron-like parti-
cles at low energies and, instead, a condensate formed by pairs of bound electrons is
found[79]. These so-called Cooper pairs may extend their propagation to the nearby
normal metal, giving rise to the electric current without dissipation of energy.

The influence of the superconducting electrodes in the electronic properties of
single-walled nanotubes has been investigated in the experiments reported in Refs.
[76] and [80]. One of the main differences between these experiments is that, in the
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latter, the transport properties have been measured in a set of individual single-
walled nanotubes. In the former experiment, the supercurrents have been observed
in a massive rope made of about 200 nanotubes, and in a thin rope leading to a
single nanotube at one of its ends. On the other hand, a common feature in both
experiments is the low resistance attained for the samples that have shown the
proximity effect. Typically the values measured at room temperature have been
consistent with a resistance of the individual metallic nanotubes of the order or
below the inverse of the conductance quantum, h/e? ~ 25.8 k2 [76, 80]. Such values
are comparable to the resistance (2Gy)~' = h/4e® corresponding to the ballistic
transport in individual nanotubes, what gives a measure of the high transparency
of the contacts produced in the experiments.

In the experiments reported in Ref. [76], the ability to produce highly trans-
parent junctions has been the result of using a remarkable technique allowing to
suspend the nanotube ropes between the contacts. In the transport measurements,
a drop to a vanishing resistance has been observed in the two nanotube samples
mentioned above, below the temperature 7, of the transition of the electrodes to the
superconducting state. The contacts were made of bilayer electrodes with respec-
tive temperatures T, =~ 1.1 K for the Re/Au bilayer in the case of the thick rope,
and T, ~ 0.4 K for the Ta/Au bilayer in the case of the thin rope. By applying a
magnetic field perpendicular to the nanotube axes, it has been possible to reduce
the value of T, as measured in the ropes, up to a point in which the transition dis-
appears for a suitably large field[76]. This effect of the magnetic field is one of the
genuine features of superconductivity, and it serves to corroborate the nature of the
phenomenon observed in the experiment.

When increasing the current that flows along the rope, it can be supported with-
out developing any resistance up to a maximum value, that is called the critical
current. The behavior of the critical currents for the ropes studied in Ref. [76]
has shown unconventional features, regarding their magnitude as well as their de-
pendence with the temperature. The critical current should vanish for instance at
the transition temperature of the contacts, but in the thick rope of Ref. [76] the
behavior is very smooth instead near 7,. In the conventional picture of the proxim-
ity effect, the magnitude of the critical current should correspond to the expression
I, = (m/2)A/eRy, Ry being the normal state resistance and A the binding energy
of the Cooper pairs in the superconducting condensate. As it has been pointed
out in Ref. [76], the value of I, estimated in that way is however 40 times smaller
than what is actually measured in the thick rope. The thin rope shows a better
agreement in the magnitude of the critical current, but this also displays a very
unusual temperature dependence, with a flat behavior until the neighborhood of T,
is reached|[76].

An explanation of the unconventional behavior of the critical currents in ropes
has been presented in Ref. [81]. It has been shown the relevance of taking into ac-
count, appropriately the interaction among the large number of metallic nanotubes
that may be present in a rope. The Coulomb potential is not screened in an individ-
ual nanotube, but the interaction between the charges in different metallic nanotubes
leads to a significant reduction of the effective interaction strength[81]. This can be
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understood by thinking that, instead of (9), the hamiltonian appropriate for a rope
with n metallic nanotubes is

H = —th/dep (k) pl (= k)

dy [k Y D) Vian(R) o0 (13)

a,b,r,s,0,0’

the indices a, b labelling the charge densities in the different metallic nanotubes. The
Coulomb interaction is long-ranged and takes place therefore between all of them,
so that it contributes equally to all the V(o) (k) terms. The hamiltonian (13) can be

diagonalized by passing to the total charge density p,,(k) =), P\ (k). It becomes
clear that the Coulomb interaction is only felt in the channel of the total charge,
while there are still n — 1 noninteracting partial channels[81].

The above argument explains that the repulsive electron-electron interaction be-
comes less relevant as the number n of metallic nanotubes increases in the rope. The
proximity effect for a Luttinger liquid in contact with a macroscopic superconductor
has been studied in Refs. [82] and [83], showing that the Cooper pairs propagate
along the one-dimensional metal but giving rise to a supercurrent I. that decays
with the length L as

I, o 1/LM* (14)

where p is the Luttinger-liquid parameter quoted above Eq. (10). Recalling that
1 < 1 in the case of a repulsive interaction, that kind of behavior can only account
for the large critical current measured in the rope of Ref. [76] after the appropriate
reduction in the strength of the Coulomb interaction is considered. It has been also
shown in Ref. [81] that the temperature dependence of the critical currents can
be reproduced by considering the one-dimensional propagation of the Cooper pairs,
what gives further support to the picture of the single-walled nanotubes as genuine
one-dimensional conductors.

In the experiment presented in Ref. [80], it has been measured the resistance of
individual single-walled nanotubes placed between Nb electrodes. The nanotubes
have been capacitively coupled to the Si substrate, and changing the gate voltage
Vy has allowed to increase the already high transparency of the contacts. Below the
transition temperature of the Nb electrodes (T ~ 9.2 K) and for some interval of
Vg, a dip has been observed in the broad peak of the resistance centered at zero
bias voltage. That structure has disappeared by increasing the temperature above
T., which shows its relation to the superconducting character of the electrodes[80].
Although the room-temperature resistances of the samples were comparable to those
in the experiment of Ref. [76], no supercurrents have been found in this case. This
can be attributed to the large strength of the repulsive electron-electron interaction
in the individual nanotubes, supporting the point of view that the superconducting
correlations are more likely to develop in ropes of nanotubes.
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5.2 Superconductivity inherent to carbon nanotubes

Superconducting properties have been also measured in nanotubes placed between
metallic, nonsuperconducting contacts[8, 9]. These experimental observations open
the way to use the carbon nanotubes as a testing ground to study superconductivity
in molecular wires with a discrete number of conduction channels. It has been
already shown that several interesting features arise, as a consequence of the finite
number of metallic nanotubes involved and their small length as compared to the
size of macroscopic conductors.

One of the main factors in the experiments reported in Ref. [8] is the good quality
of the contacts produced for the ropes. This is essential to measure the transport
properties intrinsic to the nanotubes since, under conditions of low transparency of
the junctions, it is the effect of tunneling and Coulomb blockade what is measured at
low temperatures, as described above. In the experiments of Ref. [8], the nanotube
ropes have been suspended between Pt/Au bilayers by the same technique already
used in the proximity-effect experiments[76]. This has allowed to produce devices
with a room-temperature resistance ranging from a few kiloohms down to a few
hundred ohms. It has been checked that the bilayers used in the experiment do not
become superconducting themselves at low temperatures. The fact that they are not
the source of some kind of proximity-induced superconductivity in the nanotubes is
supported by the absence of the effect in some of the shortest ropes|8].

The most clear observation of superconducting transition has been made in a rope
with about 350 nanotubes and length L ~ 1 um [8]. When measuring the resistance
of the sample as a function of the temperature, a drop by two orders of magnitude
has been observed below ~ 0.5 K, as shown in Fig. 10. The resistance does not
completely vanish below the transition, but reaches a minimum value R ~ 74 2. As
remarked in Ref. [8], this is a consequence of the fact that the resistance of a metallic
nanotube has a minimum value, given in terms of the quantum of conductance by
(2Go) ! =~ 6.5 k2. The value R ~ 74 § of the residual resistance is consistent
then with the approximate number of metallic nanotubes in the rope contributing
to the conduction in the superconducting state. The superconducting character of
the observed transition is reinforced by the behavior under a magnetic field, which
tends to decrease the transition temperature as shown in Fig. 10 [8].

The finite length of the ropes can be also determinant in the development of
the superconducting transition. In the experiments of Ref. [8], a rope with a
room-temperature resistance of about two orders of magnitude below that of the
superconducting rope described above has shown no sign of superconductivity at
low temperatures (as it can be seen in Fig. 10). The absence of transition has been
attributed to the comparatively small length of the rope (L ~ 0.3 pm) [8]. It has
been argued that the superconducting coherence length has to be smaller than the
rope length for the superconductivity to develop, that condition not being satisfied
in the case of the smaller rope. Another sample with a resistance of approximately
1 k€2 and length L ~ 1.6 um has shown a clear sign of transition in the drop of the
resistance (although at a comparatively low temperature, below 0.15 K, as observed
in Fig. 10 [8]).
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L,=300 nm
N,=240
R,=475 Q
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Figure 10: Behavior of the resistance at low temperatures for three different ropes.
The length L, the estimated number of nanotubes N and the room-temperature
resistance R are indicated in each case. The inset of (b) shows the behavior of
sample Ptl in a magnetic field ranging from 0 up to 1 T. The plot in (c) displays
also the dependence of the resistance of sample Pt2 in a magnetic field ranging from
0 up to 2 T (from bottom to top). The inset at the bottom shows a transmission
electron microscope image of sample Pt2, with the dark spot corresponding to a
Ni/Y catalyst particle. Reprinted from M. Kociak, A. Yu. Kasumov, S. Guéron, B.
Reulet, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, L. Vaccarini and H. Bouchiat,
Phys. Rev. Lett. 86, 2416 (2001). Copyright 2001 by the American Physical
Society.
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A consistent explanation of the observed superconducting transitions requires
taking into account the mechanism by which the repulsive Coulomb interaction can
be overcome in the ropes of nanotubes. The superconducting transition signals the
point at which bound electron pairs condensate in the rope. This may happen if there
is an effective attractive interaction in the electron liquid[79]. In the first place, it has
to be considered that the strength of the Coulomb interaction is strongly reduced in
a rope with a large number of metallic nanotubes, for the reasons already presented
in the discussion of the proximity-induced superconductivity[81]. Furthermore, a
source of attraction between the electrons is needed for the development of the
superconductivity intrinsic to the ropes. That attraction arises in the scattering of
two electrons by exchange of phonons (i.e. lattice vibrations), in similar manner as
it happens in the case of macroscopic superconductors[79].

The effective attraction coming from the coupling of the electrons to the lattice
vibrations can naturally overcome the repulsive Coulomb interaction[84, 85]. This
is beacuse the former takes place within each metallic nanotube of the rope while,
as emphasized below Eq. (13), the Coulomb interaction operates in fact in a single
interaction channel —that corresponding to the total charge density. Thus, although
the strength of the bare Coulomb interaction is larger, the attraction between the
electrons through phonon exchange prevails for sufficiently large number of metallic
nanotubes in the rope[84, 85]. This argument makes clear that the relevant electron-
phonon interactions come from the coupling to intratube lattice vibrations. The
maximum energies that the optical phonons may reach in the nanotubes, of the order
of ~ 0.2 eV [86, 87, 88|, are also appropriate to give rise to the superconducting
transitions observed experimentally.

Another important factor in the onset of the superconductivity is the small but
finite electron tunneling amplitude that exists between the different nanotubes in the
rope. These have what has been called compositional disorder, meaning that they
are made of a mixture of nanotubes with different helicities and diameters[53]. In
these circumstances, neighboring nanotubes cannot have their lattices aligned, and
this constitutes a great obstacle for conserving the longitudinal momentum when an
electron hops from one nanotube to the other. Thus, in a compositionally disordered
rope the intertube electron coherence is largely suppressed and the single-particle
electron states have to be localized on individual nanotubes[53].

The coupling resistance between tubes in a rope has shown actually wide vari-
ations when measured in different experimental samples, with values ranging from
2 M to 140 M€ [54]. It has been argued that this can be only explained by assum-
ing that transport in the transverse directions of the rope takes place by tunneling
between metallic nanotubes of the same helicity. All this is in contrast to the case
of an ideal crystalline rope, with perfect alignment of the nanotube lattices, where
it has been estimated that the coupling between the nanotubes should give rise to
a pseudogap in the density of states of about 0.1 eV [89, 90, 91],

It has been shown however that, when the superconducting correlations develop
in the individual nanotubes, the tunneling of Cooper pairs is the mechanism that
restablishes the intertube coherence in the rope[84]. The bound electron pairs are
formed at zero total momentum, and they are not affected in the tunneling processes
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by the misalignement of neighboring nanotube lattices. The intertube coupling es-
tablished by the tunneling of the electron pairs is a small quantity but, though small
it may be, it is essential to account for the superconducting transition in the rope,
since in a purely one-dimensional system the electron pairs cannot condensate to
form the superconducting state[92]. This becomes possible when there is a coherent
propagation along the transverse directions of the rope[84]. The close packing of
the bundle of nanotubes (forming a triangular lattice as viewed in a cross-section of
the rope) helps in this respect, since each nanotube may have on the average two
metallic nearest neighbors, thus making possible the percolation of the Cooper pairs
in the transverse directions of the rope.

The coupling of the electrons to the vibrations of the nanotube lattice and the
intertube tunneling of the Cooper pairs are the two essential factors in the super-
conductivity of the ropes. The former can be actually enhanced by dealing with
nanotubes of small diameter, since the electron-phonon coupling increases with the
curvature of the nanotube[93]. In the experiment reported in Ref. [9], large su-
perconducting correlations have been measured in nanotubes with a diameter of
~ 4 A inserted in a zeolite matrix. Such a transversal size is considerably smaller
than that of typical nanotubes in a rope, which have a diameter of ~ 1.4 nm. The
measurements of the magnetic susceptibility presented in Ref. [9] show actually the
tendency of the zeolite matrix with the nanotubes to expel the magnetic fields below
a temperature of &~ 10 K. This property corresponds to the usual Meissner effect
in a macroscopic superconductor. The measurements of the conductance show also
an unconventional behavior for a one-dimensional metallic system, in which that
observable diverges as the temperature goes to zero[9]. A microscopic description
of the large superconducting correlations observed in the nanotubes of short radius
must take into account the enhanced electron-phonon coupling[93] as well as their
particular band structure, in which more than two subbands cross the Fermi level
of the nanotubes[37, 38, 39].

6 Perspectives

Carbon nanotubes have a great potential in the development of electronic devices
with diverse functionality since their electronic properties are themselves diverse,
depending on the geometry of the nanotube lattice, the contacts used in the devices
and the temperature. At room temperature the transport may be ballistic in sam-
ples with high structural perfection. In the cases where the contacts create tunnel
junctions, one can expect nonlinear /-V characteristics which are the signature of
the Luttinger liquid behavior. At much lower temperatures, quantum interference
effects in the propagation of the electrons can be observed in samples with highly
transparent contacts while, in the case of very thick ropes, the reduction in the
strength of the Coulomb interaction may give rise to the superconductivity of the
nanotubes.

The first step towards the use of the carbon nanotubes in molecular electronics
requires the integration of several nanotube devices in order to produce the desired
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functionality. Important progress is already being made in this direction. In Ref.
[15], the architecture of two perpendicularly crossed arrays of nanotubes has been
proposed as a model for a nonvolatile random access memory. Each crossing point
for two perpendicular nanotubes constitutes an addressable device element. The
junctions have two stable positions, with a different separation between the crossed
nanotubes that can be controlled electromechanically. This allows the definition of
ON and OFF states at each crossing point, characterized by respective resistances
which may differ in general by orders of magnitude. The feasibility of the proposal
has been supported by the realization and investigation of junctions made of crossed
ropes of nanotubes[15]. The measurement of the /-1 characteristics of crossed nan-
otube junctions has been also accomplished in Ref. [94], with different combinations
of individual single-walled nanotubes with metallic and semiconducting character.

Another experimental accomplishment which has opened the way for a nanotube-
based electronics can be found in Ref. [16]. It has been reported there the construc-
tion of the first circuit based on a single nanotube capable of performing a logic
operation. The circuit represents what is called a voltage inverter, by which a log-
ical 1 can be transformed into a logical 0 and viceversa. This is the realization of
the NOT logic function, that is combined with the AND and OR logic operations to
build the complex structure of modern microprocessors. A new experimental devel-
opment has been needed in the construction of the logic circuit, since this requires
to place in series two field-effect transistors being respectively of n-type (with excess
of conduction electrons) and p-type (with conduction achieved by electron holes).
While nanotubes are usually found with the latter character, the transformation to
n-type has to be accomplished by doping the nanotubes with alkali metals or, in
a simpler way, by heating the nanotubes in a vacuum as shown in Ref. [95]. An
important feature of the circuit is the gain, that relates the strength of the output
to that of the input signal and which, in this case, reaches the value of 1.6 . This
opens the possibility of assembling gates of the kind proposed into more complex
circuits.

The operation of several small circuits built from the combination of nanotube
field-effect transistors has been also shown in Ref. [17]. What is special in the
integration of these devices is that each nanotube transistor has its own local gate, so
that the effect of doping by varying the corresponding gate voltage can be controlled
independently in each nanotube. A very large capacitive coupling has been achieved
between the semiconducting nanotube and the nearby gate, making thus possible
to shift the Fermi level in the nanotube from the valence band (p-doped regime) to
the conduction band (n-doped regime) under variations in the gate voltage. In this
way, the integration of the nanotube transistors has allowed to realize several logic
circuits, like an inverter, a NOR logic element or a static random access memory
element.

An interesting finding has been that the field-effect transistors made of single
nanotubes can have better performance that the leading silicon transistor prototypes[96].
This has been realized in the process of building nanotube-based transistors with
larger capacitive coupling between the nanotube and the gate electrode, that con-
trols the density of charge carriers in the molecule. The advances in the design of
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the transistors have come from placing the gate electrode on top of the nanotube
and using a thinner dielectric between them[96]. Thus, smaller variations in the
voltage of the gate electrode can lead to significant changes in the resistance of the
nanotube. This new kind of transistors has led to a high transconductance (the
measure of the capability to carry electric current) at low voltages, outperforming
in this respect the best silicon transistor prototypes[96].

The route towards the large-scale integration of nanotube devices presents great
complexities, but carbon nanotubes have already shown the potential for more
straightforward applications. One of them arises from the strong coupling be-
tween the electronic properties and mechanical deformations, that may include the
twist[97], bending[98] or stretching[99, 100, 101, 102] of the carbon nanotubes. It
has been shown that, in the case of semiconducting nanotubes, a semiconductor-
metal transition can take place upon application of sufficient uniaxial strain[102].
The reverse trend has been also measured, by pushing a metallic carbon nanotube
with the tip of an atomic force microscope to produce a decrease of nearly two orders
of magnitude in the conductance[103, 104, 105]. These observations open the way
to use carbon nanotubes as nanoscale mechanical sensors.

The carbon nanotubes have also shown the potential for piezoelectric applica-
tions. The injection of charge into the nanotubes can alter their structure, due to the
fact that the carbon-carbon bonds modify their lengths according to the electrons or
holes added[106]. These effects have been investigated in nanotube sheets, which are
made of highly entangled mats of nanotube bundles. In the experiments reported in
Ref. [107], the changes in the length of strips of such kind of nanotube paper have
been measured as a function of the applied voltage, carrying the operation within
a NaCl electrolyte. Thus, the expansion or contraction of the strips has been the
result of the injection of electronic charge from the electrodes to the surface of the
nanotube bundles, with the electrolyte ions forming layers of respective opposite
charges to balance those in the nanotubes[107]. The electromechanical actuators
thus designed have shown good performance, being able to generate higher stresses
than those of natural muscles. An important advantage over conventional ferroelec-
tric actuators is that the nanotube sheets can provide large strains with applied
voltages of just a few volts. The mechanical performance should be enhanced in the
case of nonbundled nanotubes, and it has been estimated that, for the sheets made
of separate nanotubes, the actuator strain could be of the order of ~ 1 %[107].
A number of possible uses of the nanotube actuators have been proposed, from
biomedical applications to flow control at high temperatures.

It has been also suggested the application of carbon nanotubes as chemical sen-
sors. The nanotubes have the tendency to adsorb gas molecules in their surface.
In the case of semiconducting nanotubes, this has been shown to lead to significant
changes in the conduction properties[108, 109]. The gas molecules give rise to a
transfer of charge that makes the nanotubes to become p-doped semiconductors.
The change in their conductivity can give then a measure of very small concentra-
tions of particles in the chemical environment at room temperature, in a much more
sensitive way than existing chemical sensors.

Carbon nanotubes can be used as tips in scanning probe microscopes, what
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provides several advantages over usual silicon tips[110, 111]. The ability that the
nanotube tips have to buckle elastically reduces the damage that can be produced
when crashing into the sample. They lead to an improvement of the resolution, as a
consequence of their small diameter. Moreover, they can be modified at the ends to
enable the manipulation of structures at the molecular scale[112]. The construction
of nanoscale tweezers has been also possible by attaching a pair of carbon nanotubes
to respective electrodes, and controlling the nanotube arms by the voltage applied
between them[113]. Such a device has made possible the manipulation of different
structures at the nanometer scale.

Finally, the technological applications of carbon nanotubes can also have a more
direct impact in every-day life. They have been proposed for the construction of
supercapacitors, which may take advantage of the large surface area accessible in
nanotube arrays. These can give rise to capacitors with high power and storage
capabilities. Anyhow, the carbon nanotubes may find the most interesting commer-
cial application as electron sources in field-emission devices[114, 115]. These can
be used in flat panel displays, as well as in lamps and x-ray sources. The emission
is produced by applying a voltage between a surface with nanotube fibers, acting
as a cathode, and a substrate with phosphor arrays. The high local fields created
in the nanotube geometry make the electrons to jump towards the anode, where
the contact with the phosphor produces the spots of light in the display. The flat
panel nanotube displays turn out to save more energy and to have higher brightness
than liquid crystal displays. A similar field-emission effect can be applied to the
generation of x-rays, when the anode is replaced by a metal surface, what can lead
to interesting applications for medical purposes. All these developments stress once
more the significance that the phenomena taking place in minute devices can have
for the construction of useful engines, tailored for the needs of our time.

Aknowledgements— It is a pleasure to thank M. Bockrath, H. Bouchiat, C.
Dekker, C. M. Lieber and C. Schonenberger, for the help granted with the graphic
material of this contribution.
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7 Appendix: Physical constants of carbon nan-

otubes
Physical property
Minimum intrinsic resistance ~ 6.5 k2
(individual metallic single-walled nanotubes)
Bandgap ~ 0.5 eV [35, 36]
(semiconducting nanotubes)
Energy gap ~ 0.05 eV [43]
(“metallic” zig-zag nanotubes)
Dielectric constant ~ 1.4 [5, 55]
(single-walled nanotubes on Si/SiO, substrate)
Charging energy ~ 2.5 meV [5]
(~ 3 pm long single-walled nanotube)
Charging energy ~ 0.5 meV [68]
(~ 2 pm long multi-walled nanotube)
Intertube resistance 21 MQ [54]
(nanotube ropes)
Superconducting transition temperature ~ 0.5 K [8]
(nanotube ropes)
Critical supercurrent ~ 1 pA [76]
(nanotube rope between Au/Re contacts)
Current density > 10° A/cm” [116]
(multi-walled nanotubes)
Mobility > 20,000 cm?/Vs [117]
(semiconducting nanotubes at room temperature)
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