

FLAT BAND OF MIDGAP ROTATING SURFACE STATES IN 3D DIRAC AND WEYL SEMIMETALS UNDER RADIATION

J. González and R. A. Molina Instituto de Estructura de la Materia, CSIC, Spain

3D SEMIMETALS

We start with a model of 3D Dirac semimetal

$$H_0 = M(\mathbf{k}) \,\sigma_z + \hbar v \left(\zeta \, k_x \sigma_x + k_y \sigma_y\right) \qquad \zeta = \pm M(\mathbf{k}) = m_0 - m_1 k_z^2 - m_2 (k_x^2 + k_y^2)$$

The low-energy spectrum has two Dirac points at $\mathbf{k}_{c} = (0, 0, \pm \sqrt{m_{0} / m_{1}})$

Near the Dirac points, the dispersion becomes linear in all directions in momentum space

$$\varepsilon_0(\mathbf{k}) = \pm \sqrt{\hbar^2 v^2 (k_x^2 + k_y^2) + 4m_0 m_1 (k_z - k_c)^2}$$

- Z. Wang *et al.*, Phys. Rev. B 85, 195320 (2012).
- Z. Wang *et al.*, Phys. Rev. B 88, 125427 (2013).

2D AND 3D SEMIMETALS UNDER CIRCULARLY POLARIZED RADIATION

- T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
- N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7, 490 (2011).
- J.-I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
- T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011).
- Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011).
- H.L. Calvo, H.M. Pastawski, S. Roche, L.E.F. Foa Torres, Appl. Phys. Lett. 98, 232103 (2011).
- A. Gómez-León, G. Platero, Phys. Rev. Lett. 110, 200403 (2013).
- P.M. Perez-Piskunow, G. Usaj, C.A. Balseiro, L.E.F. Foa Torres, Phys. Rev. B 89, 121401(R) (2014).
- Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Science 342, 453 (2013).

- R. Wang, B. Wang, R. Shen, L. Sheng, D. Y. Xing, EPL 105, 1700 (2014).
- A. Narayan, Phys. Rev. B 91, 205445 (2015).
- C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran, Phys. Rev. Lett. 116, 026805 (2016).
- J. G. and R. A. Molina, arXiv:1512.03753 (Phys. Rev. Lett., to appear).

3D DIRAC SEMIMETALS UNDER RADIATION

We investigate the changes in the spectrum when illuminating with circularly polarized light, corresponding to a vector potential

$$\mathbf{A}(t) = A(\eta \sin(\Omega t), \cos(\Omega t), 0) \qquad \eta = \pm 1$$

We use Floquet theory to find the solutions of the time-dependent Schrödinger equation

$$-i\hbar\partial_{t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$
$$|\Psi(t)\rangle = e^{-i\varepsilon t/\hbar} |\Phi(t)\rangle , |\Phi(t+T)\rangle = |\Phi(t)\rangle \quad T = 2\pi/\Omega$$

which amounts to find the result of hybridizing a number of Floquet subbands

$$\begin{split} \left| \Phi(t) \right\rangle &= \sum_{m} e^{-im\Omega t} \left| \chi_{m}^{(\alpha)} \right\rangle ,\\ \sum_{n} H_{mn} \left| \chi_{n}^{(\alpha)} \right\rangle &= \left(\varepsilon_{\alpha} + m\hbar\Omega \right) \left| \chi_{m}^{(\alpha)} \right\rangle \\ H_{mn} &= \left(1/T \right) \int_{0}^{T} dt \ H(t) \ e^{i(m-n)\Omega} \end{split}$$

3D DIRAC SEMIMETALS UNDER RADIATION

$$\sum_{n} H_{mn} \left| \chi_{n}^{(\alpha)} \right\rangle = \left(\varepsilon_{\alpha} + m\hbar\Omega \right) \left| \chi_{m}^{(\alpha)} \right\rangle$$

In our model we have

$$H_{nn} = H_0 + n\hbar\Omega \mathbf{1} - m_2 A^2 \sigma_z$$

$$H_{n+1,n} = (\hbar v/2) A(i\sigma_x - \sigma_y) + m_2 A(-ik_x - k_y) \sigma_z$$

$$H_{n-1,n} = (\hbar v/2) A(-i\sigma_x - \sigma_y) + m_2 A(ik_x - k_y) \sigma_z$$

The hybridization of the Floquet subbands gives rise to a gap over an extended ring in momentum space:

- **proportional to** *A* between subbands n = 0 and $n = \pm 1$
- **proportional to** A^2 between subbands n = -1 and n = 1

3D DIRAC SEMIMETALS UNDER RADIATION

But most interestingly, we can have evanescent states localized at the irradiated surface.

These states come as solutions with real quasi-energy ε_{α} for complex momenta k_z

$$\chi^{(\alpha)} \sim e^{ik_z z}$$
 , $k_z = k_R + ik_Z$

Computing for a wire with finite section in the *x*-*y* plane $(150 \times 150 \text{ Å}^2)$

we find evanescent states (for $\text{Im}(k_z) \approx 0.01 \text{ Å}^{-1}$) at the position of the dots within the gap between Floquet subbands in the figure.

J. G. and R. A. Molina, arXiv:1512.03753 (PRL, to appear)

WEYL SEMIMETALS UNDER RADIATION

We can have a deeper insight by solving for a single Weyl quasiparticle

 $H_{W} = -i\hbar \left(v\sigma_{x}\partial_{x} + v\sigma_{y}\partial_{y} + v_{z}\sigma_{z}\partial_{z} \right)$ $+ \hbar v A \left(\sigma_{x} \cos(\Omega t) + \sigma_{y} \sin(\Omega t) \right)$

 H_W can be translated to time-independent form by making a unitary transformation

$$\widetilde{H}_{W} = U^{+}H_{W}U - i\hbar U^{+}\partial_{t}U \qquad U = e^{-iJ_{z}\Omega t/\hbar}$$
$$= -i\hbar \left(v\sigma_{x}\partial_{x} + v\sigma_{y}\partial_{y} + v_{z}\sigma_{z}\partial_{z}\right) - \Omega J_{z} + \hbar vA\sigma_{x}$$

and transforming again we obtain

$$\begin{split} \widetilde{H}'_{W} &= P^{+} \widetilde{H}_{W} P \qquad \qquad P = e^{-iAx} \\ &= -i\hbar v \sum e^{\mp i\theta} \left(\partial_{r} \mp (i/r) \partial_{\theta} \right) \sigma_{\pm} - i\hbar v_{z} \sigma_{z} \partial_{z} \\ &- \Omega J_{z} - \hbar \Omega Ar \sin(\theta) \qquad \qquad J_{z} = -i\hbar \partial_{\theta} + \hbar \sigma_{z} \Lambda \\ \end{split}$$

2

We find that the spectrum has a gap between Floquet subbands with $j_z = \hbar/2$ and $j_z = -\hbar/2$

WEYL SEMIMETALS UNDER RADIATION

The gap has oscillations as a function of k_z which are the signature of branch points in the complex plane $\varepsilon(k_z) \sim \sqrt{k_i - k_z} \sqrt{\overline{k_i} - k_z}$

 k_i , $\overline{k_i}$ are exceptional points at which $\varepsilon(k_z) = 0$, leading to a segment of real values of ε for $|\text{Im}(k_z)| \le |\text{Im}(k_i)|$

The set of exceptional points corresponds to a sequence of evanescent states localized at the irradiated surface, with a peculiar quantization pattern

WEYL SEMIMETALS UNDER RADIATION

The most important feature of the evanescent states is that they carry an angular current j^{θ} corresponding to the flow of probability density

$$\partial_t (\psi^+ \psi) \approx \partial_\theta j^\theta$$

 j^{θ} can be computed in the space spanned by the states with $j_z = \pm \hbar/2$

$$\chi = \begin{pmatrix} \phi_1(r) \\ e^{i\theta}\phi_2(r) \end{pmatrix} e^{ik_z z} + \begin{pmatrix} e^{-i\theta}\phi_3(r) \\ \phi_4(r) \end{pmatrix} e^{ik_z z}$$

The angular current has a uniform component, which is in general negligible,

$$j_{\text{static}}^{\theta} = -i \frac{v}{r} \Big(\phi_1^*(r) \, \phi_2(r) \, + \, \phi_3^*(r) \, \phi_4(r) \, \Big) \, + \, \text{h.c.}$$

and a time-dependent component

$$j_{\Omega}^{\theta} = -i \frac{v}{r} \left(\phi_1^*(r) \, \phi_4(r) \, e^{-i(\theta - \Omega t)} + \, \phi_3^*(r) \, \phi_2(r) \, e^{i(\theta - \Omega t)} \right) + \, \text{h.c.}$$

The corresponding current intensities have magnitudes $\int dr r j_{\Omega}^{\theta} \sim 10^{-3} v/a - 10^{-2} v/a$ J. G. and R. A. Molina, arXiv:1512.03753 (PRL, to appear)

3D SEMIMETALS UNDER CIRCULARLY POLARIZED RADIATION

In conclusion,

The irradiation of the surface of 3D semimetals must lead to the observation of evanescent states carrying a non negligible angular current. The feasibility of this observation may be supported by several facts:

- the limited screening in the 3D semimetals, which has to allow the infrared radiation to penetrate sufficiently deep (~1 μm at Ω~100 THz)
- the magnitude of the angular current of individual states, which have associated a current intensity

 $e\int dr \ r \ j_{\Omega}^{\theta} \sim 10^{-1} \,\mu\text{A} - 1 \,\mu\text{A}$

the possibility of devising an experimental setup to work as a rectenna, benefiting from recent advances to rectify currents oscillating at the frequency of visible light

