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VALLEY SYMMETRY BREAKING AND INTERVALLEY COHERENCE

➢ nematicity 

in measurements of the resistivity in superconducting samples by Y. Cao et al., Science 372, 264 (2021)

➢ Kekulé charge-density-wave order

in scanning tunneling microscopy experiments by K. P. Nuckolls et al., Nature 620, 525 (2023)

We address the experimental signatures of different types of symmetry breaking in twisted 
bilayer graphene

We are going to see that it is possible to reconcile these different orders as they correspond to 
phases at different filling fractions and screening conditions in twisted bilayer graphene  
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We study the dynamical symmetry breaking by means of a self-consistent Hartree-Fock
approximation in real space, starting from a tight-binding Hamiltonian

In order to achieve an exact implementation of the method, we are going to induce flat bands 
by applying hydrostatic pressure, which increases the value of the magic angle  

For the interacting part of the Hamiltonian  Hint , we include both extended Coulomb (screened 
by metallic gates) and Hubbard contributions
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The Hartree-Fock approximation proceeds by 
assuming that the full electron propagator  G has 
a similar representation
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The noninteracting Hamiltonian  H0 can be written 
in terms of the eigenvalues and eigenvectors of the 
large tight-binding matrix 

The noninteracting electron propagator  G0 becomes 
the inverse of   H0 in the zero-frequency (static) limit 𝐺0 𝑖𝜎,𝑗𝜎 = −෍
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The eigenvectors  φ are obtained by solving self-consistently the Dyson equation

with the electron self-energy  
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The condensation of different order parameters 
can be studied through the matrix elements  tij
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The relevant patterns of symmetry breaking are:

➢ chiral symmetry breaking characterized by 
staggered charge order in sublattices A and B

➢ time-reversal and valley symmetry breaking 
with currents circulating along nearest     
neighbors  i1 , i2 , i3 of each site

𝐶(𝜎) = ෍

𝑖∈𝐴

𝑡𝑖𝑖
(𝜎)

− ෍

𝑖∈𝐵

𝑡𝑖𝑖
(𝜎)

𝑃±
(𝜎)

= ෍

𝑖∈𝐴

Im (𝑡𝑖1𝑖2
𝜎

+ 𝑡𝑖2𝑖3
𝜎

+ 𝑡𝑖3𝑖1
(𝜎)

) ± ෍

𝑖∈𝐵

Im (𝑡𝑖1𝑖2
𝜎

+ 𝑡𝑖2𝑖3
𝜎

+ 𝑡𝑖3𝑖1
(𝜎)

)

We have to add also the order parameters for intervalley coherence, with currents circulating along the 
hexagons of the carbon lattice 
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Looking at the phase diagram for filling fraction  n = −2 , we find several transitions between 
phases with different symmetry as the screening of the long-range Coulomb interaction is reduced  
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The dominant order parameter in the electron-doped regime at  n = 2  corresponds to intervalley coherence,
with the lowest conduction bands displaying  C6 symmetry 
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The self-consistent Hartree-Fock approach leads 
actually to a solution where the two spin projections 
have opposite sign of the valley polarization
(i.e. with the exchange of the two valleys)

There is then spin-valley locking, which opens the possibility of having Ising superconductivity, with 
the pairing of electrons arranged so that each spin projection is attached to a different valley. 

The same phenomenon has been found in twisted trilayer graphene, where the spin-valley locking 
leads to a strong enhancement of the small bare spin-orbit coupling, lending protection to the 
superconductivity against in-plane magnetic fields.

J. G. and T. Stauber,
Nature Commun. 14,     

2746 (2023)
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The nematicity of the hole-doped regime has an immediate effect on the superconductivity, since 
it comes from a valley polarized state with a Fermi line which is non-centrosymmetric



When we have a highly anisotropic Fermi surface, electronic instabilities may arise. Focusing on
superconductivity, we have to look at the divergences in the Cooper-pair (BCS) channel

This equation has a divergent flow when any of the harmonics has a coefficient                , with   

The self-consistent equation of the BCS vertex can 
be simplified by reabsorbing the density of states
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Taking the derivative with respect to the cutoff  Λ , we arrive at     

෠𝑉𝑛 < 0

which leads to the signature of the pairing instability in the low-energy limit  ω→  .    
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In the region of nematicity, a pairing instability may arise 
from the strong modulation along the Fermi line of the  
scattering of the electrons in a Cooper pair

The bare BCS vertex at the high-energy cutoff  Λ can 
be expressed in the RPA as an iteration of the particle-
hole susceptibility  χq

From the expansion of                    in harmonics  cos(nθ), sin(nθ),  we may look for channels of 
attraction characterized by coefficients                 .
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Then, the solution of the scaling equation

which is consistent with a critical temperature of  ~ 1 K.
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In the electron-doped regime, the electrons in the Cooper 
pair share the same centrosymmetric Fermi line, also  
with a strong modulation of the electron scattering

The bare BCS vertex at the high-energy cutoff  Λ can 
be expressed again in the RPA as an iteration of the 
particle-hole susceptibility  χq

From the expansion of                    in irreducible representations of the C6v group,  we may look 
for channels of attraction with coefficients                 .
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′)

has a singularity at the energy scale
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Then, the solution of the scaling equation

which is consistent with a critical temperature of  ~ 1 K.
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In conclusion, 

➢ we have found that twisted bilayer graphene may have phases with nematicity and 
Kekulé order, but excluding each other as they correspond to different ranges in the
screening of the Coulomb interaction 

➢ nematicity is only present in the hole-doped regime, which means that there 
the (Ising) superconductivity must have different properties compared to the 
conventional superconductivity in the electron-doped regime
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