
ELECTRONIC INSTABILITIES AND

SUPERCONDUCTIVITY OF CARBON NANOTUBES

— Carbon nanotubes as strongly correlated electron systems

— Superconductivity of carbon nanotube ropes

— Strong-coupling phases in small-diameter carbon nanotubes



The band structure of the carbon nanotubes can be understood by applying

periodic boundary conditions to a graphite sheet:
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The graphene sheet has Fermi points at the corners of the Brillouin zone:

The different subbands of the nanotube appear after quantizing the

momentum in the direction transverse to the nanotube axis. For a zigzag

nanotube, we may have for instance:
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In the case of zigzag nanotubes, there may be some subband containing the

K point of the Brillouin zone, depending on the number N of hexagonal

carbon rings encircling the nanotube:
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For a zigzag nanotube with a number N of carbon rings which is not a

multiple of 3, a gap is always found in the spectrum:
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In the case of armchair nanotubes, the allowed momenta correspond to

horizontal lines and the points where the valence and the conduction band

meet are always in the spectrum:
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At low enough energies such that all the higher subbands decouple, the

metallic nanotubes behave as genuine 1D electronic systems:
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(the energy is measured in units of the overlap integral t ≈ 2.5 eV and the

momentum in units of the inverse of the C-C distance a ≈ 1.4 Å )

But only about 1/3 of the tubes have this metallic character. The rest are

semiconducting with a gap

∆ = 2ta/d

where d is the diameter of the nanotube.

This theoretical prediction has been confirmed by

J. W. G. Wildöer et al., Nature 391, 59 (1998)

T. W. Odom et al., Nature 391, 62 (1998)



CARBON NANOTUBES AT LOW TEMPERATURES:

— transport through tunnel junctions
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M. R. Buitelaar et al., Phys. Rev. Lett. 88, 156801 (2002)

— transport through highly transparent contacts
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CARBON NANOTUBES AT ROOM TEMPERATURES:
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CARBON NANOTUBE ROPES:

A. Yu. Kasumov et al., Science 284, 1509 (1999)



In the long nanotubes, there is the signature of a new kind of electronic

state where the electron quasiparticles are suppressed at the Fermi level
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The metallic carbon nanotubes are strongly correlated electron systems,

since in D = 1 the slightest interaction destroys the conventional Fermi

liquid picture.
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Focusing on a given subband, the density operators satisfy

[ρR(−q), ρR(p)] = δpqpL/2π , [ρL(−q), ρL(p)] = −δpqpL/2π

The noninteracting hamiltonian becomes

H0 = vF
2π

L

∑

k>0

ρR(k)ρR(−k) + vF
2π

L

∑

k<0

ρL(k)ρL(−k)

For a density-density type of interaction, we also have

Hint =
1

2L

∑

k

V (k) (ρR(k)ρR(−k) + ρL(k)ρL(−k) + 2ρR(k)ρL(−k))

In this system, the elementary excitations are bosons instead of fermions,

and they can be found diagonalizing the hamiltonian by means of a

Bogoliubov transformation:


 ρL

ρR


 =


 cosh φ sinhφ

sinhφ cosh φ





 ρ̃L

ρ̃R






If we recast the change of variables

ρL + ρR =
√

K(ρ̃L + ρ̃R) , ρL − ρR =
1√
K

(ρ̃L − ρ̃R)

we get for the total hamiltonian

H0 + Hint = ṽF
2π

L

∑

k>0

ρ̃R(k)ρ̃R(−k) + ṽF
2π

L

∑

k<0

ρ̃L(k)ρ̃L(−k)

with

K =
1√

1 + V/πvF

and ṽF =
vF

K

The K parameter governs the different correlations of charge

ρ(x) = ρL(x) + ρR(x) and current Π(x) = ρL(x) − ρR(x)

〈ρ(x)ρ(0)〉 ≈ K

π2

1

x2
+ . . .

〈Π(x)Π(0)〉 ≈ 1

π2K

1

x2
+ . . .

the electron propagator

GR(x, t) ∼ 1

(x − ṽF t)(K+1/K+2)/8

1

(x + ṽF t)(K+1/K−2)/8

1

(x − vF t)1/2

and the density of states near the Fermi level

n(ω) ∼ |ω|(K+1/K−2)/4

This behavior characterizes the so-called Luttinger liquid. The power-law

dependences provide distinctive signatures to be found when measuring the

tunneling of electrons into the liquid.
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(from M. Kociak et al., Phys. Rev. Lett. 86, 2416 (2001) )



We analyze first the role of phonons in carbon nanotubes. The

electron-phonon interactions provide an effective attractive interaction

V (q, ω) = −gp,p′(k, k′)gq,q′(k, k′)
ωk−k′

−ω2 + ω2
k−k′

below the phonon energy ωk .

The electron-phonon coupling is

gp,p′(k, k′) =
1

(µ ωk−k′)1/2

∑

〈s,s′〉

u(p)∗
s (k)u

(p′)
s′ (k′)

(ǫs(k − k′) − ǫs′(k − k′))·∇J(s, s′)

z

Acoustic phonons: ωk−k′ ≈ vs|k − k′| at low momentum transfer. In that

case, the effect or retardation is important

⇒ the influence on the electronic properties is very weak (except for

|k − k′| ∼ 2kF ).

Optical phonons: ωk ∼ ωD ∼ 0.2 eV . The order of magnitude of the

coupling for the effective interaction is

∼ |gp,p′ |2
ωD

∼ a2|∇J |2
µv2

s

∼ 0.2 vF



The coupling to longitudinal and transverse phonons gives rise to different

selection rules, since the modes in 1 and 2 have different symmetry in the

honeycomb lattice
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Computing the expression

gp,p′(k, k′) =
1

(µ ωk−k′)1/2

∑

〈s,s′〉

u(p)∗
s (k)u

(p′)
s′ (k′)

(ǫs(k − k′) − ǫs′(k − k′))·∇J(s, s′)

it can be checked that, in the case of the transverse optical phonons,

g1,1(k, k′) = −g2,2(k, k′)

g1,2(k, k′) = g2,1(k, k′) = 0

z

but for longitudinal optical phonons

g1,1(k, k′) = g2,2(k, k′) = 0

g1,2(k, k′) = −g2,1(k, k′)



Below the Debye frequency ωD, there is a competition between the

Coulomb interaction

VC(k) =
e2

2π
log |1 +

kc

k
|

and the effective attractive interaction:

Interbranch and intrabranch processes

g
2

E

k (2)

— strong contribution from VC , g
(2)
eff,2 ∼ −|g1,1|2/ωD < 0

g
2

E

k (4)

— strong contribution from VC , g
(4)
eff,2 ∼ −g1,1g2,2/ωD > 0

Backscattering and Umklapp processes

g
2
(1)

E

k

— weak contribution from VC , g
(1)
eff,2 ∼ −|g1,2|2/ωD < 0

g
2

E

k (3)

— weak contribution from VC , g
(3)
eff,2 ∼ −g1,2g2,1/ωD > 0



We develop a model to deal with the competition between the Coulomb and

the phonon-exchange interaction:

E

k

ΨΨ Ψ Ψ−− +− −+ ++

r = r = 

i = 

r = r = 

i = 

+ +−

−

−

+

H0 =
1

2
vF

∫ kc

−kc

dk
∑

ariσ

: ρ
(a)
riσ(k)ρ

(a)
riσ(−k) :

+
1

2

∫ kc

−kc

dk

2π

∑

ariσ

ρ
(a)
riσ(k)

∑

bsjσ′

V
(ab)
ri,sj(k) ρ

(b)
sjσ′(−k)

The Hamiltonian can be diagonalized by changing variables to

ρ̃
(a)
1ρ (x) = ρ

(a)
++ρ(x) + ρ

(a)
−−ρ(x)

ρ̃
(a)
2ρ (x) = ρ

(a)
+−ρ(x) + ρ

(a)
−+ρ(x) ,

ρ̃
(a)
+ρ(x) =

1√
2

(
ρ̃
(a)
1ρ (x) + ρ̃

(a)
2ρ (x)

)

ρ̃
(a)
−ρ(x) =

1√
2

(
ρ̃
(a)
1ρ (x) − ρ̃

(a)
2ρ (x)

)

The Coulomb interaction and the effective interaction from phonon exchange

decouple:

H0 =
1

2
vF

∫ kc

−kc

dk
∑

ariσ

: ρ
(a)
riσ(k)ρ

(a)
riσ(−k) :

+
1

2

∫ kc

−kc

dk

2π

(
∑

a

ρ̃
(a)
+ρ(k)

∑

b

VC(k) ρ̃
(b)
+ρ(−k) + g

∑

a

ρ̃
(a)
−ρ(k) ρ̃

(a)
−ρ(−k)

)



The effective attractive interaction is an intratube effect that operates in n

different channels (n = # of metallic nanotubes ) while the Coulomb

interaction operates in the channel of the total charge ⇒ it is strongly

suppressed at large n

This has a reflection in the behavior of the different correlations within each

nanotube. At large n, the superconducting correlations are dominant, since

the propagator

D(0)
sc (x, t)≡〈Ψ(a)+

++↑(x, t)Ψ
(a)+
−−↓(x, t)Ψ

(a)
−−↓(0, 0)Ψ

(a)
++↑(0, 0)〉

has a decay

D(0)
sc (x, 0) ∼ 1

x2+γ

with

γ =
1

2n

√
1 + 4nV/πvF − 1

2n
+

1

2

√
1 − 4|g|/πvF − 1

2
− 1

πvF
2|g|

Negative values of γ imply the divergence of the correlator at ω = k = 0,

and correspond to a phase with a potential superconducting instability.
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(J. González, Phys. Rev. Lett. 88, 76403 (2002);

Eur. Phys. J. B 36 317 (2003))



However, at temperature T 6= 0, the divergences are cut off

and the development of a true superconducting instability requires the

coupling by tunneling between the metallic nanotubes.

In a compositionally disordered rope

(from A. Thess et al., Science

273, 483 (1996))

the hopping amplitude between nanotubes is quite small,

tSP ∼ 0.005 × tT ∼ 0.5 × 10−4 eV

with a relative weight wSP ∼ tSP R/vF ∼ 0.5 × 10−3 .

In comparison, the tunneling of the Cooper pairs is not affected by the

compositional disorder and has a larger rate wCP ∼ (tT R/vF )2 ∼ 0.01 .

In disordered ropes, the effect of pair hopping is therefore more important

than single-particle hopping between neighboring nanotubes.

(J. González, Phys. Rev. Lett. 88, 76403 (2002))



The above description has to be corrected by the addition of a term

accounting for the pair hopping between neighboring nanotubes 〈a, b〉

H2 =
∑

〈a,b〉

(λ2)ab

∫ kc

−kc

dk

∫ kc

−kc

dp

∫ kc

−kc

dp′

Ψ
(a)†
ri↑ (k + p)Ψ

(a)†
−r−i↓(−p)Ψ

(b)
−s−j↓(−p′)Ψ

(b)
sj↑(k + p′)

which is essential to explain the intertube coherence.

The Cooper pair propagator in the rope depends on the points za, zb in the

transverse section, D(x, t; za, zb) , and it may have a singularity at finite

temperature. Actually, the Fourier transform D̃(k, ωk; q) is given at zero

frequency and momentum by

D̃(0, 0; 0) =
D̃

(0)
sc (0, 0)

1 − λ2(0)D̃
(0)
sc (0, 0)

(J. González, Phys. Rev. Lett. 88, 76403 (2002))

The pole in D̃(0, 0; 0) is the signature of a superconducting transition. In

practice, a factor of suppression is introduced by the finite length L of the

ropes. The correlations are cut off at T about one order of magnitude below

vF /L . Taking for instance L ∼ 1 µm , we have



The superconducting phase of the ropes has to be mapped by looking for the

development of intertube coherence and the consequent superconducting

transition. When this is not achieved, exotic strong-coupling phases arise,

due to either the decoupling of the metallic nanotubes in the rope or the

onset of phase separation under very strong attraction.
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(J. V. Alvarez and J. González, Phys. Rev. Lett. 91, 076401 (2003))



Strong-coupling phases have been measured in 4 Angstrom nanotubes by Z.

K. Tang et al., Science 292, 2462 (2001) :

This is however a different kind of experiment in which the carbon

nanotubes are forming a 3D array within the channels of a zeolite matrix.

This implies that

— there is no tunneling between different carbon nanotubes

— there is a more conventional screening of the Coulomb interaction, such

as V (k) → const as k → 0

— the electron-phonon coupling is much enhanced due to the large

curvature of the tubes

The signatures of strong coupling are the development of a gap in the

differential conductance and a large diamagnetic signal at low temperatures

(from Z. K. Tang et al., Science 292, 2462 (2001))



The development of the gap is the signature of the breakdown of the

metallic Luttinger liquid picture. However, the physics is very different

depending on whether the nanotubes have a (3,3) or a (5,0) geometry :

(from H.J. Liu

and C.T. Chan,

Phys. Rev. B 66,

115416 (2002))

Again, it is a question of studying the behavior of the renormalized

velocities and K parameters in the symmetric and antisymmetric subbands

(and zero angular-momentum subband in (5,0) nanotubes)

HLL =
1

2

∫
dx

∑

s=±,0

(
vJs(Πs(x))2 + vNs(∂xΦs(x))2

)

Ks =
√

vJs/vNs , ṽs =
√

vNsvJs
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(J. González, report cond-mat/0409347)



The estimates for the Coulomb potential in the 3D array of nanotubes in the

zeolite matrix give V ≈ 0.5 − 0.9 e2 , where e2 ≈ 2.7 vF .
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Thus, the existence of superconducting correlations is unlikely in the

small-diameter nanotubes.

The singularity in the K parameters is consistent anyhow with the

appearance of a pseudogap at low temperatures, since the density of states is

given by

n(ε) ∼ ε(K++1/K++K−+1/K−−4)/8

For the (3, 3) nanotubes, we obtain for instance a favorable comparison with

the experiments in the phase with K+ → 0

0.2 0.4 0.6 0.8 1
ε

0

0.05

0.1

0.15

0.2

n



Can we account for the strong diamagnetic experimental signal within the

strong-coupling phase of the nanotubes?

We recall the coupling of the vector potential A in the 2D model for a

graphite layer

ε(k) ≈ ±vF |k|

HG = −ivF

∫
d2r Ψ†(r)σ·(∇ − i(e/c)A)Ψ(r)

The 1D projection onto the low-energy subbands of the carbon nanotube

gives

H1D = vF

∫
dkdϕ (k − (e/c)A‖(ϕ))(Ψ†

R(k)ΨR(k) − Ψ†
L(k)ΨL(k))

⇒ the component A‖ couples to the charge asymmetry

Π+ = ρR1 − ρL1 + ρR2 − ρL2 .

The response function for the current Π+ is

〈Π+(ω, k)Π+(−ω,−k)〉 =
1

K+

u+k2

ω2 − u2
+k2

so that we find a divergent susceptibility in the phase K+ = 0 .

The K+ = 0 phase of the (3,3) nanotubes seems to be therefore consistent

with the main properties (diamagnetism, pseudogap) measured in the

experiment.

(J. González, report cond-mat/0409347)



To conclude, we have seen that the intertube coherence is an essential

factor for the development of superconductivity in carbon nanotubes.

— Critical temperatures of the order of ∼ 1 K seem to be typical of ropes

with ∼ 100 metallic nanotubes. A slight increase of Tc may be expected by

enlarging the content of metallic nanotubes in the ropes.

— The influence of statistical effects should be studied on

more quantitative grounds, in particular the mechanism of percolation of the

Cooper pairs in the rope.

— Superconductivity seems to be unlikely in the small-

diameter carbon nanotubes, since the strong-coupling regime

is dominated by other instabilities (phase separation, charge-density-wave).


