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Some memories about the prehistory 



Fullerene molecules are spherical cages made of carbon atoms, which may come with an 
increasing size 

They all come with 12 pentagonal rings, which is enforced by the Euler theorem 

𝜒 = #vertices − #edges + #faces =  2
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Indeed, the contribution of an hexagon to the Euler characteristic is 
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while the contribution of a pentagon is 



But the amazing feature of fullerenes is their low-energy electronic spectrum

The electronic spectra of the series of very large fullerenes are remarkable, as one recovers the

degeneracy of the multiplets of the angular momentum (3, 5, 7, …), but l = 1   turns out to be the

lowest possible value.



If the rotational symmetry is realized approximately for very large fullerenes, it seems that 

the Dirac equation on the surface of a sphere should give a sensible description of the spectrum

𝑖 σ ⋅ ∇ Ψ𝑛 = 𝜀𝑛 Ψ𝑛

However, the Dirac equation on the surface of a sphere does not have zero modes, while

the spectrum is given in terms of the total angular momentum j



The resolution of the puzzle comes from the observation that the pentagonal defects do more that just

adding curvature to the surface.

The pentagonal carbon rings can be formed by making a cut in the plane and gluing the edges. This

induces an effective rotation of π/3 at the junction, which implies in turn the exchange of the two

Dirac valleys

The exchange of the two Dirac valleys is only felt when making a complete turn around the topological

defect. Therefore, the effect can be mimicked by a line of effective gauge flux  Φ threading the pentagonal 

ring, acting on the (K , K´) space
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In the fullerenes, the combined effect of the 12 pentagonal rings is consistent 
with the field of a monopole, whose charge is dictated by the total flux

By approximating the effective gauge field by an isotropic flux at the spherical surface of the fullerene, 
the Dirac equation for the curved lattice becomes

where  A is the effective gauge field mixing the spinors at  K and  K´.

The problem can be solved by passing to the operator  J of the total angular momentum of spinors, 
curvature and gauge field, which leads to the equation

The spectrum is then given in terms of the angular momentum number j

which, for g = 3/2, accounts for the existence of two triplets of zero modes with j = 1 .



Other instances where topological defects arise in graphene correspond to geometries with negative

curvature. We have in particular the case of nanotube-graphene junctions

This corresponds to a surface with Euler characteristic

So we must have 𝜒 = #vertices − #edges + #faces =  −1
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The contribution of each heptagon is now given by

Which means that we must have 6 heptagons to reach the Euler characteristic χ =  ‒1  .  



When the heptagonal rings are regularly distributed at the junction, the possible geometries correspond to  
nanotubes of type  (6n,6n) (“armchair”), or type  (6n,0)  (“zigzag”).

When looking at the electronic spectra, it can be seen that all the (6n,6n) geometries have a peak at zero 
energy in the local density of states at the junction, while this also happens in the (6n,0) geometries when  n
is a multiple of 3

(local DOS shown here for different quantum number under  π/3  rotation,                                                                )𝑞 = 1 𝑎 , 𝑒±
𝑖𝜋
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J. G., F. Guinea and J. Herrero, 

Phys. Rev. B 79, 165434 (2009)



The low-energy electronic spectrum can be approached by solving the Dirac equation in the nanotube and 
graphene sides, and then matching the solutions at the junction



This model has indeed solutions at  ε = 0  when the fictitious gauge flux is above certain minimum value 

Adding the gauge flux of the 6 heptagonal rings up to Φ = 3π , we get zero modes of the form

We find a state with  n = 1 which has an amplitude decaying in both the plane and the nanotube. Similarly, 

we have another localized state with  n = -1 in the other sublattice of the graphene layer. These localized 

states are then consistent with the above low-energy peak in the DOS.



One can also deal with a regular lattice of nanotube-graphene junctions, as an ideal form of some structures which 

have been synthesized in the lab 

(from Fujitsu Laboratories Ltd.)

Taking in particular a lattice of junctions with armchair nanotubes, or (6n,0) tubes n being a multiple of 3,

we find flat bands close to the Fermi level, which are a reflection of the localized modes at the junctions   

J. G., F. Guinea and J. Herrero, Phys. Rev. B 79, 165434 (2009)



Memories about more recent history



It is possible to form commensurate superlattices from a graphene 
bilayer by means of a relative twist

We have a sequence of superlattices with 

This gives rise to a superlattice with a periodic pattern 
of regions with AA, AB and BA stacking. Along the mentioned 
sequence, we have a growing period

In momentum space, we have two inequivalent moiré Brillouin
zones which arise from the hybridization of
states around the respective K valleys, and respective
–K valleys of the two layers



This picture leads in momentum space to the so-called continuum model, 
accounting for the hybridization of states at valley K , layer 1,
with states at valley K - K , K - K + G1 , and K - K + G2 , of layer 2

(J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto, PRL 99, 256802 (2007))

This leads to a smooth modulation of the interlayer hopping 

This continuum model allows to understand many of the low-energy properties of twisted bilayer graphene 



One of the first effects derived from the continuum model was  the strong renormalization of the 
Fermi velocity vF (J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto, PRL 99, 256802 (2007))

The measure of the separation between the van Hove singularities in valence and conduction 
bands made possible and accurate determination of the renormalization

G. Li et al., Nature Phys. 6, 

109 (2010)

Other experiments carried out with STS were indeed observing the breakdown of single layer behavior

A. Luican et al., Phys. Rev. Lett. 

106, 126802 (2011) 



Relying on the continuum model, it was shown that the Fermi velocity should be renormalized 
according to the exact formula (R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011))

The point at which  vF vanishes (“magic” angle) signals the development of an approximately flat band

It was actually found that there is a whole sequence of magic angles at which  vF vanishes  

(R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011))



In an attempt to understand the physics of the magic angles, we pursued the approach of casting the 

continuum model in terms of gauge fields (P. San-José, J. G. and F. Guinea, PRL 108, 216802 (2012))

This can be more easily illustrated in a model with real interlayer potentials, with

𝑉𝐴𝐵´ = −𝐴𝑥 − 𝐴𝑦 ,      𝑉𝐵𝐴´ = −𝐴𝑥 + 𝐴𝑦

Ax and Ay induce a shift of the momenta, which is off-diagonal in the space of the two layers



The case of twisted bilayer graphene is more involved since the interlayer potentials are complex

and we have the mismatch   ΔK in the position of the Dirac nodes 

But we can achieve a similar construction

Introducing the Pauli matrices  τi acting on the layer space, we can write in compact form

We can remove the  ΔK mismatch of the Dirac cones by means of a gauge transformation

P. San-José, J. G. and F. Guinea, PRL 108, 216802 (2012)



By squaring the Dirac equation, we obtain (at Φ = 0)

The pattern of confinement can be read from the vector potential, which keeps the charge density 

away from the regions of stacking AB’ or BA’

However, it is much more difficult to establish a quantization rule that may explain the 

sequence of magic angles  --perhaps commensuration of the flux in the moiré unit cell? 

P. San-José, J. G. and F. Guinea, PRL 108, 216802 (2012)

Anyhow, it turned out that, at large L, the sequence is given by the formula   


