
3. Electronic Systems in d = 1

3.1 Introduction

In this chapter we undertake the general description of electrons in one dimen-
sion. There exist systems which are actually one-dimensional, as is the case of
polyacetilene[1], and others which may be considered “quasi-one-dimensional”,
i. e. that show conduction properties in a prefered direction. This is the case of
the well-known organic charge-transfer compounds[2]. The study of electronic
properties in one dimension is not, therefore, purely academic. This is also sup-
ported by the relevance of these systems in the investigation of the so-called
“quantum wires” [3] and by the increasing evidence that the edge excitations
in the fractional quantum Hall effect are effectively that of a one-dimensional
liquid[4].

When considering a physical problem of electrons in one dimension, one may
either place the emphasis on the electron-phonon interaction or turn to consider
as most relevant the electron-electron interaction. Following the scope of these
notes we are going to focus our interest in the latter. Even in this perspec-
tive, one may adopt two different approaches depending on the problem. One
of them is well-suited to problems where there are strong correlations among
electrons and localization effects are important. These use to be properties of
non-conducting systems, in which the physics is supposed to be well-described
by the Hubbard model[5]. The other approach is appropriate to situations in
which the interactions are not so strong, leading in general to metallic behav-
ior. This is the point of view that we are going to adopt in what follows. It will
allow us to consider perturbation theory as the starting point to investigate our
systems and to make the map of the space of all the couplings constants. The
main achievement of this approach is to show that, opposite to what happens
in three spatial dimensions, the generic behavior in one dimension is not given
by the Landau Fermi liquid picture, but by the so-called Luttinger liquid. This
can be already understood from the breakdown of perturbation theory, which
is spoiled by infrared divergences in one spatial dimension.

In the present chapter we undertake the analysis of perturbation theory
and its failure in one dimension, which we fix with the machinery of the renor-
malization group. Chapter 4 is devoted to introduce the general techniques of
bosonization for one-dimensional fermion systems and to develop the physical
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Fig. 3.1. Dispersion relation of electrons in a one-dimensional lattice.

picture of the Luttinger liquid. Finally, in Chap. 5 we discuss the correspondence
of discrete models to the continuum field theory framework.

3.2 Perturbation Theory. Renormalization Group

Our one-dimensional systems have in general some kind of lattice support, given
by the periodic disposition of atoms in a crystal. In tight-binding approximation,
for instance, and considering only one conduction band, the electronic dispersion
relation for Bloch states is given by

ε(k) = −t cos ak (3.1)

where a is the lattice spacing.
The one-particle hamiltonian in terms of the creation and annihilation op-

erators c+
kσ, ckσ of Bloch states is

H0 =
∑

k,σ

ε(k)c+
kσckσ (3.2)

The symbol σ denotes spin, ↑ or ↓, and the label k is restricted to the first
Brillouin zone (−π/a, π/a). The bandwith W is in general proportional to the
hopping parameter t.

We will suppose that the Fermi level εF is placed somewhere in the middle
of the band, not very close to its top nor to its bottom —we will see later that
the effective strength of the interaction is inversely proportional to the slope at
the Fermi momentum. The main feature of the electronic system in d = 1 is
the existence of two Fermi points at ±kF , given by ε(±kF ) = εF . This makes
possible to encode the physics of the low-energy excitations into a simple field
theory, what is not feasible in general at higher dimensions. Let us consider,
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for instance, processes which involve an energy ∼ E0 much smaller than the
bandwith W . Then it is justified to focus on the states in an interval (−E0, E0)
about the Fermi level. The dispersion relation may be linearized within this
range, so that

ε(k) = εF + vF (k − kF ) + . . . at the right Fermi point (3.3)

ε(k) = εF + vF (−k − kF ) + . . . at the left Fermi point (3.4)

where

vF =
dε

dk
(kF ) (3.5)

Higher orders in the expansion may be considered irrelevant, in the sense pointed
out in the preceding chapter. This linear approximation, that we will use hence-
forth, is good in general if the interaction is not too strong and not long-ranged.
The Coulomb interaction, for instance, may give rise to different effects than
those considered here.

At this point we may distinguish between states attached to the right Fermi
point, denoted by akσ, a

+
kσ, and states attached to the left Fermi point, denoted

by bkσ, b
+
kσ. In the linear approximation we may write our one-particle hamilto-

nian in the form

H0 =
∑

k,σ

vF (k − kF )a+
kσakσ +

∑

k,σ

vF (−k − kF )b+
kσbkσ (3.6)

where we understand now that the cutoff |ε(k)−εF | < E0 is implicit in the sum
over modes.

3.2.1 Interactions

We apply now the scaling arguments introduced in the previous chapter to
determine the form of the relevant or marginal interactions of the electronic
system in d = 1. The expression (3.6) is nothing but the Dirac hamiltonian in
1 + 1 dimensions with nonvanishing chemical potential. In terms of respective
fermion fields of left and right chirality

Ψ1σ(x) =
1√
L

∑

k

eikxbkσ (3.7)

Ψ2σ(x) =
1√
L

∑

k

eikxakσ (3.8)

we may write, apart from the chemical potential term,

H0 = −ivF

∫

dx
∑

σ,j

(−1)j Ψ+
jσ∂xΨjσ (3.9)

From this “free” hamiltonian we may read the scaling dimension of the fermion
fields (in energy units) [Ψj(x)] = 1/2. We may now ask what kind of interaction
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Fig. 3.2. Interactions between currents of like chirality.

hamiltonians can be built out of Ψ1 and Ψ2 if only dimensionless coupling con-
stants are allowed. This catalog may still be too long, so that here we restrict
it to interactions of density-times-density type. This amounts to the require-
ment of charge conservation in the processes under consideration. Then the
only possible form of the interaction is (leaving aside subindices)

Hint ∼
∫

dx1 dx2 Ψ+(x1)Ψ(x1)V (x1, x2)Ψ
+(x2)Ψ(x2) (3.10)

where the potential V (x1, x2) must have dimensions of energy. Obviously, terms
with higher content of fermion fields have to be irrelevant, in the sense of the
previous chapter, since they have to enter through coupling constants with the
dimensions of positive powers of some microscopic length scale.

The collection of all the interactions of the above type is most easily sum-
marized by drawing the corresponding Feynman diagrams in momentum space.
In these we represent right modes by a full line and left modes by a dashed
line. A wavy line represents the exchange of momentum through the interaction
potential. Its Fourier transform introduces some structure, that we suppose to
be given by some smooth function of momentum, nonsingular at k = 0. There
are, in general, four different kinds of four-fermion interactions, according to the
type of incoming and outgoing modes[6]. We consider first the interaction be-
tween two densities of the same type of modes, corresponding to diagrams with
two incoming right modes and two outgoing right modes, or the same construc-
tion with right replaced by left. Even then there are two different possibilities,
as shown in Fig. 3.2, depending on whether the two densities have the same or
opposite spin. The coupling constant in each case is conventionally denoted by
g4‖ and g4⊥.

Another different situation is when the density of left modes interacts with
the density of right modes. This is illustrated in Fig. 3.3 . Again the two densities
may bear the same or different spin, making necessary to introduce respective
coupling constants g2‖ and g2⊥.

Further on, a more ingenious interaction arises when two modes at different
sides of the Fermi sea are excited to the respective opposite branches. As shown
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in Fig. 3.4, the typical momentum exchange has to be about 2kF . The coupling
constant for this kind of interaction is now called g1‖ or g1⊥, for parallel or
opposite spins at the two sides of the interaction, respectively. As we will see
later, this process of backscattering introduces the main complication in the
investigation of one-dimensional electron systems, as it spoils in general the
integrability of the theory. The same can be said of the remaining interaction,
which goes with the coupling constant g3 and is built out of Umklapp processes.
These are shown in Fig. 3.5, where the excess of momentum 4kF is supposed
to be absorbed by the lattice substrate. This interaction becomes relevant only
at the point of half-filling, as we will see in the study of the harmonic chain in
Chap. 5.

As we have already remarked, the momentum structure of the interaction is
given by the Fourier transform of the potential. We have assumed that this has
to be a nonsingular, smooth function for any value of k. In the rest of this chapter
and for the sake of a clear exposition we will take it as a constant function of
the momentum. Anyhow, our conclusions will not depend on this particular
choice. In practice, it amounts to contract the interaction to a point in real
space. Then, it is clear that g1‖ and g2‖ are describing, apart from a difference
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Fig. 3.6. Example of four-point vertex function.

of sign, the same kind of process. We will fix this ambiguity by making the
choice g2‖ = g2⊥ ≡ g2, so that only three independent couplings, g1‖, g1⊥ and
g2, remain[6]. We will use this convention to the end of this chapter.

3.2.2 Quantum Corrections

Now that we have written down the possible interaction terms in the hamilto-
nian, we want to investigate some of the properties of the quantum theory. We
follow here the philosophy adopted in quantum field theory, in that the inter-
action corrects the “bare” coupling constants and promotes them to respective
vertex functions. One of these, that we call Γ1‖, is represented in Fig. 3.6, where
the circle stands for all possible interactions connecting the external legs. The
object can be computed in perturbation theory, the zeroth order being obviously
the value of g1‖ according to our above redefinition.

We undertake the computation of the first order corrections in Γ1‖, from
which one gains insight of the problems to define such object. Resorting to
Feynman diagrams, there are essentially three different contributions, repre-
sented in Fig. 3.7 . In diagram (a) the two interactions have to be g1‖, and in
diagram (b) they both can be either g1‖ or g1⊥. It can be checked that, opposite
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Fig. 3.7. Diagrams contributing to Γ1‖ to the one-loop order.

to what happens with these two diagrams, the contribution of diagram (c) does
not give rise to logarithmic divergences, so that it can be neglected in what
follows.

The particular kinematics that we take for diagram (a) is indicated in Fig.
3.8 . The internal propagators for right modes and left modes are, respectively,

G
(0)
R (ω, k) =

1

ω − vF (k − kF ) + iǫ sgn(k − kF )
(3.11)

G
(0)
L (ω, k) =

1

ω − vF (−k − kF ) + iǫ sgn(−k − kF )
(3.12)

The contribution to Γ1‖ from diagram (a) is therefore

Γ
(a)
1‖ =

= −i2g2
1‖

∫ dk

2π

dω

2π
G

(0)
R (ω1 + ω, kF + k) G

(0)
L (ω2 − ω,−kF − k)

= −i2g2
1‖

∫ dk

2π

dω

2π

1

ω1 + ω − vF k + iǫ sgn(k)

1

ω2 − ω − vF k + iǫ sgn(k)
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Fig. 3.8. Diagram (a) of the previous figure, with the kinematics used in its compu-
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= i2g2
1‖

∫ dk

2π

dω

2π

1

ω + ω − vF k + iǫ sgn(k)

1

ω + vF k − iǫ sgn(k)
(3.13)

where we have called ω1+ω2 ≡ ω. We can perform first the k integral by working
in the complex k plane. If we take ω > 0 (we suppose that ω > 0), we find a
pole slightly over the real axis at (ω+ω)/vF and another slightly under the real
axis at −ω/vF . The result of the integral is, for ω > 0,

−i2g2
1‖

∫

ω>0

dω

2π

2πi

2π

1

vF

1

ω + 2ω
= 2g2

1‖
1

2πvF

∫ E0

0
dω

1

ω + 2ω

≈ −g2
1‖

1

2πvF

log
ω1 + ω2

E0

(3.14)

where we have made use of the bandwith cutoff E0. It can be checked that the
contribution for ω < 0 gives the same result. The total contribution from this
diagram is therefore

Γ
(a)
1‖ = −g2

1‖
1

πvF

log
ω1 + ω2

E0

(3.15)

We turn now to the contribution of diagram (b). We evaluate it in the
particular kinematics shown in Fig. 3.9 (in the case ω1 −ω3 > 0). Following the
same steps as before we get

Γ
(b)
1‖ =

= −i2(g2
1‖ + g2

1⊥)
∫ dk

2π

dω

2π
G

(0)
R (ω, kF + k) G

(0)
L (ω3 − ω1 + ω,−kF + k)

≈ (g2
1‖ + g2

1⊥)
1

πvF

log
ω1 − ω3

E0

(3.16)

Finally, by adding up the contributions from diagrams (a) and (b) we get
the result for the vertex function to first order in perturbation theory

Γ1‖ = g1‖ − g2
1‖

1

πvF

log
ω1 + ω2

E0

+ (g2
1‖ + g2

1⊥)
1

πvF

log
ω1 − ω3

E0

+ . . . (3.17)

There are two important observations to be made about this expression. The
first of them is that, apparently, the value of Γ1‖ depends on the particular value
chosen for the cutoff E0. This is actually inadmissible, since we may think of the
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Fig. 3.9. Diagram (b) of Fig. 3.7, with the kinematics used in its computation.

vertex function as the “body” which allows us to obtain a four-point scattering
amplitude just by inserting the appropriate modes in place of the external legs.
This latter object is directly observable, and cannot depend on the cutoff as
far as we are dealing with a predictive theory. The second remark concerns the
divergence of (3.17) at small frequency values. This again cannot be a sensible
effect, especially when this singularity appears even more pronounced at higher
levels in perturbation theory. It can be checked, for instance, that the iteration
of diagram (a) giving an n-loop contribution to the vertex function behaves
like ∼ logn(ω/E0). Therefore what we are really observing is the breakdown
of standard perturbation theory. We are going to see, however, how the first
shortcoming is related, in a certain sense, to the second, and leads to the key
idea giving physical meaning to the vertex function through the machinery of
the renormalization group.

3.2.3 Renormalization Group

We have already learned in Chap. 2 how the ideas underlying the renormaliza-
tion group can be applied to quantum statistical problems in which some energy
scale can be varied by orders of magnitude. We face here one of these situations,
since our aim is to make physical sense of a theory with a built-in cutoff E0.
This may start being of the same order than the bandwith W but much smaller
than the typical energy of the electron interactions. Opposite to the approach to
renormalization group based on a statistical physics description, we are going to
place the emphasis on the philosophy usually adopted in quantum field theory.
According to this point of view, our pretension will be to absorb the dependen-
cies on the cutoff by applying some renormalization program. The outcome of
this implementation is that the renormalization group is doing for us the partial
sum of perturbation theory, in such a way that the above mentioned logarithmic
divergences are cured. Actually, the problem of perturbation theory of electrons
in one dimension is only one example of a recurrent logarithmic problem which
appears in many different contexts, like the X-ray edge singularity problem, the
Kondo effect, etc. In all these cases the recipe is to perform a partial sum of
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the perturbative expansion to get rid of the logarithms and obtain the right
frequency (or energy) dependence.

Let us state the basic idea behind the renormalization group[7]. In a quan-
tum (many-body) theory where there is an available energy scale, a change of
the scale in posing a given problem leads to an effective hamiltonian description
with different couplings at the new scale. Applied to our particular expression
(3.17), this means that we may want perhaps to change the scale of energy E0,
but cannot then pretend to keep constant all the couplings. We have to allow
for modifications of the “coupling constants” with E0, so that a quantity like
Γ1‖ which may be used to compute an observable remains cutoff independent.
The requirement of renormalizability is actually very strong for a quantum field
theory. It means that all the dependence on the cutoff of physical quantities
can be absorbed by redefinitions of the couplings and the scale of the fields[8].
To the extent in that it has been studied, our quantum theory of electrons with
the given set of couplings has proven to be renormalizable, which gives us the
right to adopt the quantum field theory point of view.

We illustrate the property of renormalizability in a very simple instance.
In general we impose a relation of the couplings and the fields to renormalized
partners which do not depend on the cutoff

g(E0) = Zg(E0)gR (3.18)

Ψ(E0) = ZΨ (E0)ΨR (3.19)

Usually, the knowledge that one has of Zg and ZΨ is only perturbative. Work-
ing to the first order and collecting all the dependencies on E0 we obtain the
condition for the cutoff independence of the vertex function (3.17)

d

dE0

{

g1‖(E0) − g2
1⊥(E0)

1

πvF

log E0 + . . .
}

= 0 (3.20)

In order to get a simple expression let us address the case of spin-independent
interactions, that is g1‖ = g1⊥. We obtain then

E0
d

dE0

g1(E0) =
1

πvF

g2
1(E0) + higher orders (3.21)

This equation encodes at this level all the information from the renormalization
group, since it tells us how do we have to change the coupling constant by a
modification of the cutoff, in order to maintain invariant the vertex function.
Now suppose that we do not want to describe a given problem at the scale E0

but want to consider another scale E, which in general may be different by
several orders of magnitude. The relation between the coupling constants at the
two different scales is given by the integral of (3.21)

− 1

g1(E)
+

1

g1(E0)
=

1

πvF

log
E

E0

(3.22)

or, finally,
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g1(E) =
g1(E0)

1 − (g1(E0)/πvF ) log (E/E0)
(3.23)

Equation (3.23) displays the full insight of the renormalization group. We
learn from it that, if we started at a scale E0 with a coupling g1 > 0 and turned
to pose the problem at a smaller scale E, the effective coupling constant be-
comes reduced. Thus, if the original g1 was already small (compared to πvF )
the predictions that we get from (3.23) have to be increasingly good. On the
other hand, if we had started with a coupling g1 < 0, by progressing to lower
scales E << E0, we would reach a point in which the effective coupling blows
up. Well before this, however, our perturbative renormalization group approach
must have lost its applicability. This accelerated growth of the coupling con-
stant points at the onset of some instability which is beyond the framework of
perturbation theory. We will comment ahead on the nature of the ground state
in the repulsive (g1 > 0) regime.

The main application of the renormalization group arises by trading the
notion of the variable scale of energy E by the typical frequency at which a
process is measured. If we interpret g1(E) as the effective value of the vertex
function we get

Γ1(ω) ≈ g1(E0)

1 − (g1(E0)/πvF ) log (ω/E0)
(3.24)

This is the solution to the logarithmic problem posed by perturbation theory.
Actually, it is known since long ago that the expression (3.24) arises also from
the sum of certain class of diagrams in perturbation theory[9]. These are the so-
called “parquet diagrams”, which are obtained by repeated insertion of diagrams
(a) and (b) of Fig. 3.7 into themselves. The above form of the vertex function
has also the virtue of being independent of the value of the cutoff E0 —the
remaining problem we wanted to fix. This is not strange, since it is the starting
point of the renormalization group. If a change of the cutoff is made to E ′

0 taking
care of changing also the value of g1, it can be checked that the value of Γ1 in
(3.24) remains invariant. From this expression we arrive again at the conclusion
that, even in the neighborhood of vanishing coupling constant, the physics of the
attractive interaction (g1 < 0) is quite different to that of repulsive interaction
(g1 > 0), as we see that only in the latter case makes sense the notion of small
perturbation.

The most interesting analysis, however, is that of the space of couplings
with g1‖ 6= g1⊥. In this case one has to solve a coupled set of differential renor-
malization group equations (one for each coupling constant). The form of the
integrals as the value of the cutoff is decreased gives the flow of the renormaliza-
tion group in coupling constant space. The most important issue is to determine
the regions in which the flow is stable (bounded) and the regions in which it
is not. The most illustrative flow diagram appears in the (g1⊥, g1‖) plane. It is
represented in Fig. 3.10, as the result of solving the first order renormalization
group equations.

This is a rather familiar phase diagram in condensed matter physics, since
it appears also in quite different instances as the anisotropic Kondo problem[10]
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or the Kosterlitz-Thouless phase transition[11]. We see that in the region g1‖ ≥
|g1⊥| the flow is stable and leads always to a fixed point over the g1⊥ = 0
line. We remind that the meaning of the flow is that a problem with a certain
set of coupling constants at a given scale is equivalent to another with lower
energy scale and coupling constants found ahead in the corresponding orbit of
the flow. This implies that a system in the region g1‖ ≥ |g1⊥| must have physical
properties related to another in which the backscattering mediated by g1⊥ can
be neglected. This is of great help, as we will see in the next chapter, since
the model with g1⊥ = 0 is a gapless, integrable system. On the other hand, in
the region g1‖ < |g1⊥| the flow is not bounded at this level, and the physical
properties cannot be easily predicted. There is a horizontal line of points in the
lower half-plane (Luther-Emery line) in which the theory can be solved, though
this is not a line of fixed points[6]. There is evidence that in this regime the
system ends up acquiring a gap in the spin excitation spectrum, which is the
signal of an incipient superconductivity.

3.2.4 Ground State Properties

We now turn to the question of the nature of the ground state of the one-
dimensional systems. This is studied by looking at the response functions, which
give the hint of the kind of fluctuations which dominate at T = 0. In general
one may expect instabilities of superconducting, charge density wave and spin
density wave type. In these one-dimensional systems one cannot have true long-
range order, yet it is possible to study the divergence of the response functions
in ω at certain values of the momentum and determine in this competition which
fluctuation prevails at low energy.

The response function related to a given charge, spin or superconductivity
pairing operator O is defined by
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R(ω, k) = −i
∫

dt eiωt〈O(t, k)O+(0, k)〉 (3.25)

In the case of the charge or the spin density operator, R(ω, k) follows at k = 2kF

a power law behavior ωα for small ω, which gives the measure of the instabilities
present in the system[6]. One is led therefore to study the dynamic correlations
for the charge density operator

OCDW (t, k + 2kF ) =
∑

p

a+
p+k+2kF ↑bp↑ +

∑

p

a+
p+k+2kF ↓bp↓ (3.26)

the spin density operator

OSDW (t, k + 2kF ) =
∑

p

a+
p+k+2kF ↑bp↑ −

∑

p

a+
p+k+2kF ↓bp↓ (3.27)

the singlet pairing operator

OSP (t, k) =
∑

p

ap+k↑b−p↓ +
∑

p

b−p↑ap+k↓ (3.28)

and the triplet pairing operator

OTP (t, k) =
∑

p

ap+k↑b−p↓ −
∑

p

b−p↑ap+k↓ (3.29)

The power law behavior ωα of the response functions is consistent with
the fact that under the renormalization group the correlators get anomalous
dimensions at small ω. To see how this works, let us consider the correlation of
the charge density operator, in the simple case of spin-independent interactions
g1‖ = g1⊥. In the noninteracting theory, the corresponding response function
RCDW (ω, k) is given by a single particle-hole loop of the same type that appears
in Fig. 3.9 . We already know the result for this object from (3.16). To zeroth
order in perturbation theory we have

RCDW (ω, 2kF ) =
1

πvF

log
ω

E0

+ O(g2) (3.30)

where ω is now the external frequency injected into the loop. The first pertur-
bative corrections appear by iterating the loop by means of g1 interactions or
by inserting a g2 interaction in the middle of it. Adding up both contributions
we have

RCDW (ω, 2kF ) =
1

πvF

log
ω

E0

(

1 +
2g1 − g2

2πvF

log
ω

E0

+ . . .
)

(3.31)

We observe that the iteration of the above operations in the loop produces
more severe logarithmic divergences to higher orders in the interaction. This is
an indication that the breakdown of perturbation theory arises from the wrong
expansion of an exponential dependence on the coupling constants. Renormal-
ization group methods allow to reproduce again the correct dependence by
exploiting the scaling properties of the correlator with respect to changes in the
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cutoff E0. If we take the derivative of RCDW (ω, 2kF ) with respect to E0, we have
to bear in mind the explicit dependences at the right-hand-side of (3.31) as well
as the implicit dependences of the coupling constants on the cutoff. However, if
we apply the derivative on g1 or g2, this produces higher order terms according
to (3.21). Therefore, to first order we have

∂

∂E0

RCDW = − 1

πvF

1

E0

(

1 +
2g1 − g2

πvF

log
ω

E0

+ . . .
)

(3.32)

Within the same approach of the perturbative renormalization group, we may
replace (πvF )−1 log(ω/E0) in the second term of the derivative by the full re-
sponse function RCDW , the difference being of higher order in the coupling
constants. Finally we get the differential equation

∂

∂E0

RCDW = − 1

πvF

1

E0

(1 + (2g1 − g2)RCDW + . . .) (3.33)

In order to obtain the dominant behavior of RCDW , we observe that g1(E0) and
g2(E0) are both regular at small values of the cutoff (for g1 > 0). The only
singularities may arise due to the 1/E0 factor at the right-hand-side of (3.33)
and g1 and g2 can be set to their respective fixed-point values, 0 and g∗

2. The
solution of (3.33) has therefore the leading behavior

RCDW ∼
(

ω

E0

)αCDW

(3.34)

with αCDW = −g∗
2/(πvF ). We remark that the combination g2 − g1/2 is a

renormalization group invariant, to the order we are working here. Therefore,
in terms of the original couplings we have αCDW = −(g2 − g1/2)/(πvF ). By
means of similar calculations, one may check that the rest of exponents for
the spin density, singlet pairing and triplet pairing response functions are given
respectively by

αSDW = −(g2 − g1/2)/(πvF ) (3.35)

αSP = (g2 − g1/2)/(πvF ) (3.36)

αTP = (g2 − g1/2)/(πvF ) (3.37)

Characterizing the nature of the ground state by the most singular behavior
among the mentioned response functions, one may draw the phase diagram in
the coupling constant space. This is shown in Fig. 3.11 for the region g1 > 0,
which is susceptible of perturbative treatment. For g2 > g1/2 we may expect a
tendency to the formation of a charge density wave or a spin density wave in the
ground state of the theory. On the contrary, for g2 < g1/2 the superconductivity
pairing correlations are supposed to dominate the system. Though we have only
worried about the power-law dependence of the response functions, these are
affected by logarithmic corrections, which enhance the spin density or the triplet
pairing instability over the charge density or the singlet pairing instability in
the corresponding situation.
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Fig. 3.11. Phase diagram of the one-dimensional electron system with spin-indepen-
dent interactions.

We may think of the power-law dependence of the response functions as
a reflection of the critical behavior of the system, though the exponents that
we find are non-universal, i.e. they depend on the coupling constants of the
model. On the other hand, the correlations are enhanced with respect to those
of the noninteracting theory. The logarithmic behavior in (3.30) translates into
a power-law decay in real space (t, x) of the form ∼ 1/x2, while a scaling of
the type (3.34) gives rise to a long-distance behavior ∼ 1/x2+α. For the corre-
sponding response function with α < 0, this slower decay reflects a tendency to
order, which cannot be attained anyhow as far as in two space-time dimensions
a continuous symmetry cannot be spontaneously broken. We will find again the
phenomenon of enhancement at 2kF when discussing the correlation functions
of the Hubbard model in Chap. 5.

We close this chapter by remarking that the above physical picture has to be
taken with the reserve inherent to a perturbative treatment. In particular, it is
not guaranteed that modifications of the flow and new physics may not arise for
sufficiently large values of the couplings. In the unstable phase g1 < 0 we even
lack a perturbative description of the low-energy physics. What would be needed
is actually some specific modelling of the large attractive interaction. These and
other questions, as the effects of band curvature, are still open problems in the
topic of one-dimensional electron systems.

exercise 3.1 Compute the contribution to Γ1‖ from the diagram in Fig. 3.9 .

exercise 3.2 Check that the value of Γ1(ω) in (3.24) is invariant under the
change to a different cutoff E ′

0



16 J. González et al.



References

[1]A. J. Heeger, S. Kivelson, J. R. Schrieffer and W. P. Su, Rev. Mod. Phys. 60

(1988) 781.
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4. Bosonization. Luttinger Liquid

4.1 Luttinger Model. Bosonization

In this section we are going to focus our attention on the line of critical points
g1⊥ = 0 in the upper half-plane of Fig. 3.10 . These are worth of study since, as
stated in the previous chapter, the properties of the theory on that line give the
low-energy physics on the whole region g1‖ ≥ |g1⊥|, where the backscattering
is an irrelevant perturbation. The model with g1⊥ = 0 is called the Tomonaga
model[1]. A further simplification is achieved if one introduces an infinite linear
dispersion relation for both left and right channels, as shown in Fig. 4.1 . It
is argued that the influence of the deeper, spurious electronic states can be
neglected if one only cares about low-energy processes. The consequences of
this variant are important since the model with the infinite linear dispersion
relation and the interactions given in Figs. 3.2 and 3.3 is exactly solvable. This
is called the Luttinger model[2]. Quite remarkably, this is a quantum field theory
in which the complete summation of diagrams in perturbation theory can be
achieved[3]. This can be done using the great degree of symmetry of the model:
the dynamics conserves the number of particles of given spin in a given channel.

We will not adopt, though, the perturbative approach to solve the Luttinger
model. Instead we will introduce bosonization techniques which are well-suited
for more general problems in 1+1 dimensions. Haldane has made plausible that
certain properties that one describes by means of bosonization are robust, in
the sense that they should be shared also by the more realistic one-dimensional
electron systems (whenever backscattering can be neglected). These proper-
ties configure a kind of universality class, referred to by the name of Luttinger
liquid[4]. Its most prominent feature is the absence of quasiparticles with the
same quantum numbers of the electron, together with the possibility of clas-
sifying all the excitations into boson-like objects. These account, in general,
for charge and spin degrees of freedom, whose dynamics becomes completely
independent.

4.1.1 Bosonic Excitations

We begin by classifying the excitations of the non-interacting Luttinger model.
Since in the present development the two possible orientations of spin play



20 J. González et al.

-

6ε

k

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
••

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

kF−kF

Fig. 4.1. Electronic dispersion relation in the Luttinger model.

parallel roles we will simply omit them, instead of duplicating all the expres-
sions (spin requires an explicit consideration, however, when the interactions
are turned on). Our “free” hamiltonian reads then

H0 =
∑

k

vF (k − kF )a+
k ak +

∑

k

vF (−k − kF )b+
k bk (4.1)

where, according to the infinite dispersion relation, no cutoff is implied in the
sum over modes.

If we think of all the possible ways in which one can confer energy to the
Fermi sea represented in Fig. 4.1, we find three essentially different operations
in which this can be done.

i) Density excitations

The first may consist of taking an electron of the Fermi sea, in a given
channel, and promoting it to an empty state above the Fermi level, in the
same branch of the dispersion relation. In practice one considers the linear
combination of operations involving the same excitation energy, for instance

ρkR =
∑

q

a+
q+kaq (4.2)

for the right branch, and

ρkL =
∑

q

b+
q+kbq (4.3)

for the left branch.
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Now, it is clear that for k > 0 ρkR creates an excitation while ρkL desexcites
the Fermi sea. For k < 0 the roles are reversed. These operators cannot be inter-
preted yet as true creation and annihilation operators, since their commutation
relations do not have the proper normalization. It can be shown that

[ρ−k′R, ρkR] = δkk′ k
L

2π
(4.4)

[ρ−k′L, ρkL] = −δkk′ k
L

2π
(4.5)

We have supposed for convenience that the electrons are confined in a compact
dimension of length L. The proof of the commutation relations (4.4), (4.5) has
actually some subtle points that can be conveniently dealt with taking into
account the infinite linear dispersion relation[5]. If one only cares about low-
energy excitations, though, the same results can be obtained by using a linear
dispersion relation with bandwith cutoff. We give a sketch of the proof of (4.4)
and (4.5) in this latter case. Suppose that we consider the region of momentum
space between −Λ + kF ≡ k1 and Λ + kF ≡ k2. The commutator of ρ−kR and
ρkR, for instance, reads

[ρ−kR, ρkR] =





∑

k1<q−k,q<k2

a+
q−k aq,

∑

k1<r+k,r<k2

a+
r+k ar





=
∑

k1<r,r+k<k2

δq,r+k a+
q−kar

−
∑

k1<q,q−k<k2

δr,q−k a+
r+kaq (4.6)

It is important to have in mind that in these sums all the subindices run between
k1 and k2. For this reason, provided that 0 < k < Λ, one can see that the first
sum in (4.6) has k over 2π/L more contributions than the other from the lower
part of the band, while the second gets the same number in excess from the
upper part of the band. We may now replace the right-hand-side of (4.6) by its
vacuum expectation value on the ground state, which is an increasingly good
approximation as Λ → ∞ or, equivalently, at low-energies. Since the number
operator a+

r ar gives zero acting on states above kF , we get kL/(2π) for the final
result of the commutator.

At this point, we form boson creation and annihilation operators by defining

B+
k =

√

2π

L |k|ρkR k > 0 , B+
k = −

√

2π

L |k|ρkL k < 0

Bk =

√

2π

L |k|ρ−kR k > 0 , Bk = −
√

2π

L |k|ρ−kL k < 0 (4.7)

These obey the canonical commutation relations

[

Bk, B
+
k′

]

= δkk′ (4.8)
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In this boson representation, the unexcited Fermi sea is equivalent to the boson
ground state, defined as the state which is annihilated by all the Bk. The energy
associated to the creation of each boson is obviously vF |k|.

ii) Current excitations
We may imagine, furthermore, a second type of excitation process of the

Fermi sea. It arises when a number of electrons of one of the branches are
taken from below the Fermi level and shifted to the other branch. For a given
number of shifted electrons, we are going to be interested in the minimal energy
needed in the process. Thus, in the case of one electron we have to take it at
the Fermi level, say from the left channel, and place it on top of the highest
occupied level in the right channel. One has to remember that the system has
spatial periodicity equal to L, so that the distance between neighboring states
in momentum space is 2π/L. The energy involved in shifting one electron is
therefore this quantity times vF .

In the process of transferring two electrons from one channel to the other,
we have to realize that, after having shifted the first, the second electron is
pulled from a state which is at a distance 2π/L of the Fermi level. As it has
to be placed on top of the previously transferred electron, the total energy
involved in the process is 2π/L times vF (1 + 3). It is not hard to see that the
energy needed in the case of three electrons is 2π/L times vF (1 + 3 + 5), in
the case of four electrons 2π/L times vF (1 + 3 + 5 + 7), etc. In general, the
energy needed to transfer a number J of electrons can be expressed in compact
form as (2π/L)vF J2 [4]. What is important to realize is that J is also half the
difference of the number of electrons of one channel with respect to the other.
In the Luttinger model the dynamics conserves the number of electrons NR in
the right channel and the number of electrons NL in the left channel. Therefore
it is really appropriate to take J as a number, since it is a conserved charge
of the problem. The energy for the kind of process we have just described is
therefore

π

2L
vF (NR − NL)2 (4.9)

iii) Charge excitations
Finally, we are left with only one more possibility to excite the Fermi sea of

Fig. 4.1 . This is the addition of net charge to the system. In other words, we have
to evaluate the dependence of the energy of the system on charge variations.
Since the preceding operation involved the asymmetry in the distribution of
electrons in the two branches, we will suppose for convenience that the same
charge is confered to each channel. We take the Fermi level as a reference when
measuring the energy balance. Thus, after addition of one electron to each
channel the energy gained by the system is (2π/L) times 2vF . The energy needed
to modify by two units the charge per channel is (2π/L) times 2vF (1 + 2), to
modify it by three (2π/L) times 2vF (1 + 2 + 3), etc. The sequence of integer
numbers appears as the result of placing each new electron on top of the previous
one. In general, when the total charge added to the system is N , the balance of
energy becomes (2π/L)vF (N/2 + 1)N/2. In this operation, however, the Fermi
level is risen by vF δkF = (2π/L)vF N/2. Since we are measuring the energy with
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respect to this reference level we have to discount this shift. The energy gained
by addition of charge becomes then[4]

π

2L
vF (NR + NL)2 (4.10)

where now NR and NL are normal ordered quantities, i.e. measured after sub-
traction of the charge of the Fermi sea.

4.1.2 Bosonization

The remarkable fact is that, in one dimension, the set of bosonic excitations
we have just described spans the whole Hilbert space of the original fermion
problem. Thus, the basis of one-particle electron states and that of boson occu-
pation numbers are nothing but different representations for the same quantum
system. The boson excitations are all independent by construction. That they
also provide a complete set of states can be shown in several ways. The most
sophisticated consists of computing the partition function of the grandcanonical
ensemble

Z(β) = tr exp{−βH0} (4.11)

in both bases and checking that the result is independent of taking the trace over
fermion or boson excitations[4]. Actually, the identity between the expressions
one obtains in the two cases is highly nontrivial. A quicker way of showing the
equivalence of the two representations manages to compare the thermal energy
for the two descriptions, in the infinite volume limit L → ∞ [6]. Then, the
sums over modes can be replaced by integrals which are easier to evaluate. The
thermal energy in the fermion representation is

EF =
∑

k>kF

2
ε(k) − εF

eβ(ε(k)−εF ) + 1
≈ 1

β2

L

2πvF

∫ ∞

0
dx

2x

ex + 1
(4.12)

where the factor of 2 takes into account the energy of the holes. The same
quantity in the boson representation reads

EB =
∑

k>0

ε(k)

eβε(k) − 1
≈ 1

β2

L

2πvF

∫ ∞

0
dx

x

ex − 1
(4.13)

It can be checked that the two integrals in (4.12) and (4.13) give the same result,
which completes the proof in the limit vF β/L ≪ 1.

As a consequence of the mentioned equivalence, we may also express the
hamiltonian (4.1) in terms of the bosons Bk, B

+
k and the conserved charges

NL, NR. Recalling the energy of each mode evaluated before, we have

H0 =
∑

k 6=0

vF |k|B+
k Bk +

π

2L
vF (NR − NL)2 +

π

2L
vF (NR + NL)2

=
∑

k 6=0

vF |k|B+
k Bk +

π

L
vF N2

L +
π

L
vF N2

R (4.14)
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In fact, one can organize more efficiently the boson excitations into a pair of
boson fields in 1+1 dimensions. As stated before, the conserved charges NL and
NR count additional fermions to the Fermi sea and are therefore represented by
the normal ordered form of the respective zero momentum boson modes. We
have, for instance,

NR =
∑

q

a+
q aq − 〈

∑

q

a+
q aq〉 (4.15)

along with a similar expression for the left charge. It is possible to arrange ρkR

and NR into a genuine chiral boson field

ΦR(x) =
2π

L



xNR + i
∑

k 6=0

e−ikx

k
ρkR



 (4.16)

This field has a definite chirality since, in the sum over modes, creation opera-
tors, for instance, enter only for k > 0. The field with the opposite chirality is
given by

ΦL(x) =
2π

L



xNL + i
∑

k 6=0

e−ikx

k
ρkL



 (4.17)

We have obtained this chiral decomposition quite naturally, since we have
started with a problem in which the two branches of the dispersion relation
are completely disconnected.

In field theory one usually deals with the complete boson field

Φ(x) = ΦL(x) + ΦR(x)

=
2π

L
x (NL + NR) + i

∑

q 6=0

√

2π

L |q|
(

e−iqxB+
q − eiqxBq

)

(4.18)

The decomposition into left and right parts requires the use of the momentum
field operator

Π(x) =
1

4π
(∂xΦL(x) − ∂xΦR(x))

=
1

4π





2π

L
(NL − NR) −

∑

q 6=0

√

2π

L |q| |q|
(

e−iqxB+
q + eiqxBq

)



(4.19)

which enters in the canonical commutation relation

[Φ(x), Π(y)] = iδ(x − y) (4.20)

We have actually the relations

ΦL(x) =
1

2

(

Φ(x) + 4π
∫ x

dy Π(y)
)

(4.21)

ΦR(x) =
1

2

(

Φ(x) − 4π
∫ x

dy Π(y)
)

(4.22)
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that will be needed in the next section for the boson representation of the
fermion field operator. The representation of the chiral boson fields in terms of
the fermions is straightforward and reads, from (4.16) and (4.17),

∂xΦL(x) =
2π

L
ρL(x) (4.23)

∂xΦR(x) =
2π

L
ρR(x) (4.24)

In terms of the boson fields the hamiltonian (4.14) can also be expressed in
integral compact form. From the above expressions it can be proven that

H0 =
∫ L

0
dx vF

π

L2
(: ρL(x)ρL(x) : + : ρR(x)ρR(x) :)

=
vF

2

∫ L

0
dx :

(

4πΠ2(x) +
1

4π
(∂xΦ(x))2

)

: (4.25)

Normal ordering in the above expression is needed to deal with singularities
arising from the product of fields at the same point. This representation of the
hamiltonian as a quadratic form on the density fields stems from a more general
property for Kac-Moody algebras (Sugawara construction), of which ours is a
trivial example[7]. As we are going to see, it plays also an essential role in the
integrability of the Luttinger model.

4.1.3 Interacting Theory

As mentioned before, the Luttinger model describes points of the critical line
in which only the g2 and g4 types of interaction are present, in the notation of
Figs. 3.2 and 3.3 . This makes possible to express the interacting hamiltonian, as
well as the “free” hamiltonian (4.25), as a form quadratic in boson creation and
annihilation operators. The g1⊥ type of interaction cannot be written in the
form “density” times “density”, which explains why the backscattering term
spoils in general the integrability of the model.

According to the description of Figs. 3.2 and 3.3, the interaction hamiltonian
now reads

Hint =
1

L

∑

q>0

g2(q) (ρqRρ−qL + ρ−qRρqL)

+
1

L

∑

q>0

g4(q)

2
(ρqRρ−qR + ρ−qRρqR + ρqLρ−qL + ρ−qLρqL) (4.26)

In what follows we let g2 and g4 depend on the momentum transfer q. We will
see that this level of generality is needed since some constraints on the “coupling
constants” arise for the strict integrability of the Luttinger model.

Aside from the zero momentum modes, we write the total hamiltonian of
the interacting model in terms of the boson operators (4.7)



26 J. González et al.

H = H0 + Hint

= vF

∑

q 6=0

|q|B+
q Bq −

∑

q>0

g2

2π
|q|

(

B+
q B+

−q + BqB−q

)

+
∑

q>0

g4

4π
|q|

(

B+
q Bq + BqB

+
q + B+

−qB−q + B−qB
+
−q

)

(4.27)

It is convenient to rewrite the first term in the form

vF

∑

q 6=0

|q|B+
q Bq =

vF

2

∑

q 6=0

|q|
(

B+
q Bq + BqB

+
q

)

− vF

2

∑

|q| (4.28)

where we suppose that the last sum is conveniently cut off in the ultraviolet.
It turns out that the g4 interaction can be absorbed into a redefinition of the
“free” hamiltonian

H =
1

2

∑

q 6=0

(

vF +
g4

2π

)

|q|
(

B+
q Bq + BqB

+
q

)

− vF

2

∑

|q|

−
∑

q 6=0

g2

4π
|q|

(

B+
q B+

−q + BqB−q

)

(4.29)

We see therefore that the effect of g2 and that of g4 are quite different on the
electronic system. The effect of g4 is to “renormalize” the value of the Fermi
velocity

vF → vF +
g4

2π
≡ v′

F (4.30)

while that of g2 is more drastic since it changes the ground state.
In fact, the total hamiltonian can be diagonalized by means of a Bogoliubov

transformation[8]

B̃+
q = cosh φ(q) B+

q − sinh φ(q) B−q (4.31)

B̃−q = cosh φ(q) B−q − sinh φ(q) B+
q (4.32)

With this parametrization, the new operators B̃q and B̃+
q continue satisfying

canonical commutation relations. Writing the hamiltonian in terms of them and
requiring the cancellation of the B̃+

q B̃+
−q and B̃qB̃−q contributions, we get the

condition on φ(q)

tanh 2φ(q) =
1

v′
F

g2

2π
(4.33)

The diagonal hamiltonian reads then

H =
1

2

∑

q 6=0

ṽF |q|
(

B̃+
q B̃q + B̃qB̃

+
q

)

− vF

2

∑

|q|

=
∑

q 6=0

ṽF |q| B̃+
q B̃q +

1

2

∑

(ṽF − vF ) |q| (4.34)

where
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ṽF = v′
F cosh 2φ(q) − g2

2π
sinh 2φ(q)

=

√

(

vF +
g4

2π

)2

−
(

g2

2π

)2

(4.35)

We find that the consistency of the above procedure demands a first con-
straint to be satisfied

(I) |g2| ≤ |2πvF + g4| (4.36)

On the other hand, removing the ultraviolet cutoff implicit in the last term of
(4.34) may lead, in general, to a divergent boson ground state energy, unless
ṽF − vF goes appropriately to zero at large |q|. This finiteness or independence
of the ground state energy on the cutoff is not usually seen, though, as very
relevant, since even a divergent result may be interpreted as a global shift of
the energy scale. It cannot be said the same regarding the normalization of the
boson ground state. This is now annihilated by all the “free” operators B̃q and
is related to the state |O 〉B annihilated by the original Bq operators through
the expression

|O 〉B̃ ∼ exp





∑

q>0

tanh φ(q) B+
q B+

−q



 |O 〉B (4.37)

It can be shown that this state is normalizable only if the following constraint
is satisfied[4]

(II) lim
|q|→∞

√

|q| g2

2πvF + g4

= 0 (4.38)

We should impose therefore conditions (I) and (II) to ensure the integrability
of the Luttinger model. This implies the existence of some length scale which
separates the short and long distance ranges in the system. Finally, the con-
dition that both g2 and g4 are finite at q = 0 is also usually imposed within
the context of the Luttinger model. Though it does not arise from the above
development, it is needed to maintain the physical properties which character-
ize the universality class of the model. Its violation, as it happens in the case
of the Coulomb interaction, leads in general to new physics, announced by the
abnormal behavior of the response functions[9].

To summarize, we have been discussing the Luttinger model, which is actu-
ally a class of electronic systems with “density” times “density” type of interac-
tions. The main property of them is that all their excitations can be classified
in terms of boson degrees of freedom. Though we have been carrying out the
discussion without taking into account the spin, its inclusion leads to the same
essential result. This is treated in the following section, where we also complete
the bosonization program giving the translation of the electron field in terms of
boson operators.

exercise 4.1 Check the equivalence of the representations (4.14) and (4.25) of
H0.



28 J. González et al.

exercise 4.2 Find the norm of the state (4.37) and the condition for its finite-
ness.
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4.2 Charge-Spin Separation. Luttinger Liquid

In this section we consider the Luttinger model of one-dimensional electrons
with spin. The discussion carried out in the previous section for the noninter-
acting theory can be now entirely reproduced, but the introduction of the spin
gives rise to the genuine physical properties that characterize the interacting
theory. The most important of them, namely the complete separation of the
charge and the spin excitations, builds up the concept of Luttinger liquid. In
this universality class should fall one-dimensional systems which may deviate
slightly from the Luttinger model description, but share with it the absence
of excitations with the same quantum numbers of the electron. This property
alone establishes a neat difference with the Fermi liquid behavior characteristic
of the higher dimensions.

In order to discuss the above points, the main technical achievement of this
section will be the representation of the fermions fields in terms of the boson
operators. This involves the rather nontrivial concept of how fermions may arise
in a theory built out of bosons[10, 11]. The most clear explanation of this fact
is perhaps given by Mandelstam[12]. Once we are able to express every field in
terms of the boson fields, we may compute all the correlators of the interacting
theory and, in particular, the one-particle electron Green function. Its inspection
will clearly show that it lacks the characteristic pole structure of Fermi liquid
behavior, proving that in the interacting theory, and no matter how small the
strength of the couplings may be, there are no physical states with spin 1/2
and the electron charge. We will finally provide some intuitive picture trying
to understand how this deconfinement of the charge and the spin is a plausible
phenomenon in one dimension.

4.2.1 Charge-Spin Separation in a Simple Case

The introduction of the spin just amounts to make a parallel counting of the
boson excitations for the two spin orientations, in the noninteracting theory.
Taking into account (4.25) the expression of the “free” hamiltonian becomes

H0 =
∫ L

0
dx vF

π

L2
(: ρR↑(x)ρR↑(x) : + : ρR↓(x)ρR↓(x) : + L ↔ R ) (4.39)

It is convenient to introduce the respective charge density and spin density fields
(we omit the subindices L,R in this formula)

ρ(x) =
ρ↑(x) + ρ↓(x)√

2
, σ(x) =

ρ↑(x) − ρ↓(x)√
2

(4.40)

The separation of charge and spin is then manifest in the “free” hamiltonian
since

H0 =
∫ L

0
dx vF

π

L2
(: ρR(x)ρR(x) : + : σR(x)σR(x) : + L ↔ R ) (4.41)
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It can be also shown that in the interacting hamiltonian of the Luttinger
model (g2 and g4 interactions alone) charge and spin always decouple. Suppose
a simple instance in which the interaction is local (apart from some momentum
transfer cutoff which we do not write explicitly), involving only the charge
density

Hint = g
1

L2

∫ L

0
dx : (ρL(x) + ρR(x)) (ρL(x) + ρR(x)) :

= g
1

L2

∫ L

0
dx (: ρL(x)ρL(x) : + : ρR(x)ρR(x) :)

+2g
1

L2

∫ L

0
dx ρL(x)ρR(x) (4.42)

The combination H0 + Hint can be diagonalized, as in the previous section, by
means of the “pseudorotation”

(

ρL

ρR

)

=

(

cosh φ sinh φ
sinh φ cosh φ

) (

ρ̃L

ρ̃R

)

(4.43)

For the value

tanh 2φ = − g/π

vF + g/π
(4.44)

we obtain the diagonal form

H = ṽF
π

L2

∫ L

0
dx (: ρ̃R(x)ρ̃R(x) : +L ↔ R )

+vF
π

L2

∫ L

0
dx (: σR(x)σR(x) : +L ↔ R ) (4.45)

In this example it is quite trivial that the only eigenstates of the hamiltonian
are given by spin waves and plasmons. The response functions for charge and
spin show the poles corresponding to these physical states, for instance,

χ(ω, k) ≡ −i
∫

dt eiωt〈σ(t, k)σ(0,−k)〉

=
v2

F k2

ω2 − v2
F k2 + iǫ

(4.46)

The above is just an illustration of the charge-spin separation which al-
ways takes place in the Luttinger model. It is a good exercise to show that for
arbitrary values of g2‖, g2⊥, g4‖ and g4⊥ the change of variables (4.40) always
decouples the charge and the spin excitations[13]. Then one can perform two
independent “pseudorotations” in the respective sectors to bring the hamilto-
nian to diagonal form, showing that the velocity of spin excitations is different
than that of charge excitations, and both different, in general, to vF .
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4.2.2 Boson Representation of Fermion Operators

At first sight it may appear intriguing that a fermion-like object may be built
in a theory which, as we have already seen, is made out of bosons. This point
is perhaps best understood following Mandelstam[12] and his argumentation
about the sine-Gordon model[11]. This is the model for a boson field Φ(x) with
an interaction hamiltonian

Hint ∼
∫

dx cos Φ(x) (4.47)

Together with trivial static solutions like Φ(x) = ±π, the sine-Gordon model
has soliton solutions which interpolate between different wells of the interaction
potential. A single soliton, in particular, complies to the boundary conditions

Φ(x) → π , x → ∞
Φ(x) → −π , x → −∞ (4.48)

In the quantum theory, therefore, we have two different types of fluctuations.
We have particle excitations, which appear by quantizing about the solution
Φ(x) = π, for instance, and we have also the quanta which arise from the soliton
solution. It can be shown that the soliton and the corresponding antisoliton bear
nonvanishing fermion number, being therefore the manifestation of the fermion-
like object in the theory. This is consistent with our representation (4.23) and
(4.24) of the density fluctuations. The total charge of the system (which for the
particular sine-Gordon model (4.47) is a conserved charge, see Ref. [12]) is

Q =
1

2π

∫ +∞

−∞
dx ∂xΦ (4.49)

which gets nonvanishing (integer) values for the soliton solutions like (4.48).
From the point of view of the particles (bosons), the fermion is an object which
interpolates between different topological sectors of the model. We will reach a
more intuitive understanding of this phenomenon when describing the harmonic
chain in Chap. 5.

Following with this argumentation, Mandelstam represents the fermion field
Ψ(x) as a soliton annihilation operator. That is, it must be an operator which
shifts the value of Φ(y) by 2π to the left of x, and leaves it unmodified to the
right. This is expressed in the form

[Φ(y), Ψ(x)] = 2πΨ(x) , y < x (4.50)

[Φ(y), Ψ(x)] = 0 , y > x (4.51)

A possible representation of Ψ(x) which satisfies these commutation relations
is (see (4.20))

Ψ(x) =: O(x) exp
(

−i2π
∫ x

dy Π(y)
)

: (4.52)
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where the operator O(x) is still undetermined. If we now require that Ψ(x)
and Ψ(y) anticommute at different points x and y, we are led to take the two
possibilities[12]

Ψ1(x) = : exp
(

−i
1

2
Φ(x) − i2π

∫ x

dy Π(y)
)

: (4.53)

Ψ2(x) = : exp
(

i
1

2
Φ(x) − i2π

∫ x

dy Π(y)
)

: (4.54)

At this point we recognize in the argument of the exponentials the two chiral
boson fields (4.21), (4.22). It is therefore appropriate to identify (4.53) and
(4.54), respectively, with the two fermion components of given chirality

ΨR(x) = : exp (iΦR(x)) : (4.55)

ΨL(x) = : exp (−iΦL(x)) : (4.56)

Quite satisfactorily, it can be also shown that, in a given channel, Ψi(x) and
Ψ+

i (y) also satisfy the canonical anticommutation relations
{

Ψi(x), Ψ+
i (y)

}

= δ(x − y) i = L,R (4.57)

In all these considerations it is implicit the assumption that the fields ΦL(x) and
ΦR(x) are the very same that those defined from the density fields ρL(x) and
ρR(x). There is, however, a nontrivial self-consistency check to be carried out,
that is, to verify that the computation of the fermion density for a given channel,
: Ψ+

i (x)Ψi(x) :, with the above boson representation of the fermion fields actually
matches the definitions (4.23) and (4.24). This is left as an exercise at the end
of the section.

The above boson representation of the chiral fermion fields makes possible
the computation of any correlator of the electron system. The full fermion field
operator can be decomposed in the form

Ψ(x) =
1√
L

∑

k

eikxak +
1√
L

∑

k

eikxbk

= eikF x 1√
L

∑

k

ei(k−kF )xak + e−ikF x 1√
L

∑

k

ei(k+kF )xbk

= eikF xΨR(x) + e−ikF xΨL(x) (4.58)

Correlation functions involving any number of Ψ fields can be translated into
expectation values on the boson vacuum of products of exponentials of boson
fields. The computation requires the knowledge, in general, of the object

〈: eiαΦ(x) : : e−iαΦ(y) :〉 (4.59)

In the case α = 1, we should recover the free propagator for the chiral fermion
with the well-known behavior ∼ (x − y)−1. As we will see in the next subsec-
tion, though, in the interacting theory we get to know the expression (4.59) for
arbitrary values of α.
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The calculation, for instance, of

〈: eiαΦR(x) : : e−iαΦR(y) :〉 (4.60)

can be accomplished in the following way. In all the pertinent instances, the
expectation value refers to the vacuum free of bosons. The way to proceed,
then, is to place to the right all the boson annihilation operators. We have
already the normal ordered form

: exp (iαΦR(x)) := exp



−α
∑

k>0

√

2π

kL
e−ikxB+

k



 exp



α
∑

k>0

√

2π

kL
eikxBk





(4.61)
After use of the formula

eAeB = eB+Ae
1

2
[A,B] = eBeAe[A,B] (4.62)

we get

〈: eiαΦR(x) : : e−iαΦR(y) :〉 =

= 〈
∏

k>0

exp



−α

√

2π

kL
e−ikxB+

k





∏

p>0

exp

(

α

√

2π

pL
eipxBp

)

×

∏

q>0

exp

(

α

√

2π

qL
e−iqyB+

q

)

∏

r>0

exp



−α

√

2π

rL
eiryBr



〉

= 〈
∏

k>0

exp



−α

√

2π

kL
e−ikxB+

k





∏

q>0

exp

(

α

√

2π

qL
e−iqyB+

q

)

×

∏

p>0

exp

(

α

√

2π

pL
eipxBp

)

∏

r>0

exp



−α

√

2π

rL
eiryBr



〉 ×

exp

(

α2 2π

pL
eip(x−y)

)

= exp



α2 2π

L

∑

p>0

1

p
eip(x−y)



 (4.63)

The last expression is more easily evaluated in the infinite volume limit L → ∞.
The sum can be traded then by an integral, taking into account that it is actually
regulated in the infrared by the minimum value of the momentum ∆ ≡ 2π/L,

〈: eiαΦR(x) : : e−iαΦR(y) :〉 ≈

≈ exp
{

α2
∫ ∞

∆
dk

1

k
eik(x−y)

}

≈ exp
{

−α2
[

log (∆(x − y)) − i
π

2

]}

=

(

L

2π

i

(x − y)

)α2

(4.64)

This is the final result. In the case of the free electron correlator α = 1, it shows
the correct spatial behavior, apart from normalization factors. The boson rep-
resentation of the fermion field needs anyhow to be regulated in the ultraviolet,



34 J. González et al.

and the way we have done it here by the normal order prescription is the usual in
quantum field theory[14]. There are, however, more possibilities. In condensed
matter physics a more sophisticated prescription is usually taken[10], which al-
lows to reproduce also the imaginary part of the electron Green function (the
iǫ prescription). This will be used in the description of the discrete models in
Chap. 5.

In general, time dependent correlators can be infered from their static limit,
by enforcing the manifest Galilean invariance of the theory. Thus, in the case
of a right-handed field the time dependence is obtained replacing x − x′ by
x− x′ − vF (t− t′), while in the case of a left-handed field it amounts to replace
x−x′ by x−x′+vF (t− t′). This of course can be checked by direct computation
with operators in the interaction representation.

4.2.3 Electron Green Function

We illustrate the computation of the electron Green function in the Luttinger
model, in the case of the charge density interactions already quoted in (4.42).
The general case can be dealt with by means of the same method. We begin by
dissociating charge and spin fields (we omit subindices L,R at this point)

Φc =
Φ↑ + Φ↓√

2
, Φs =

Φ↑ − Φ↓√
2

(4.65)

We have, for instance, depending on the orientation of the spin ↑ or ↓

ΨR↑ = ei(ΦcR+ΦsR)/
√

2 (4.66)

ΨR↓ = ei(ΦcR−ΦsR)/
√

2 (4.67)

We may interpret therefore the electron field as being composed of two com-
pletely independent fields, one that carries charge but no spin (the holon) and
other that carries spin but no charge (the spinon). This picture is correct to
the extent that the hamiltonian is built out of disjoint charge and spin excita-
tions. We may say then that the holon and the spinon are deconfined in one
dimension.

What we want to obtain, on the other hand, is a correlator like

GR↑(t − t′, x − x′) = −i〈T ΨR↑(t, x)Ψ+
R↑(t

′, x′)〉 (4.68)

in the interacting theory. We could apply for that purpose the expression (4.64),
were not for the fact that it is valid only for free fields, as implied in its deriva-
tion. It is possible to resort, however, to the linear change of variables (4.43)
that decouples left and right modes in the hamiltonian and renders it a diagonal
quadratic form in the boson fields. In our case we have to make the canonical
transformation

(

ΦcL

ΦcR

)

=

(

cosh φ sinh φ
sinh φ cosh φ

) (

Φ̃cL

Φ̃cR

)

(4.69)
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to obtain free fields Φ̃cL and Φ̃cR. ΦsL and ΦsR are already decoupled, but in the
general case with spin-dependent interactions another “pseudorotation” to free
fields may be needed in the spin sector. By playing with the holon-spinon de-
composition and the decoupling of left and right modes, the interacting electron
Green function reduces to a product of correlators of the type (4.64).

Without paying attention to normalization factors, we have

GR↑(t − t′, x − x′) =

= 〈ei(ΦcR(t,x)+ΦsR(t,x))/
√

2 e−i(ΦcR(t′,x′)+ΦsR(t′,x′))/
√

2〉
= 〈eiΦcR(t,x)/

√
2 e−iΦcR(t′,x′)/

√
2〉〈eiΦsR(t,x)/

√
2 e−iΦsR(t′,x′)/

√
2〉

= 〈eiΦcR(t,x)/
√

2 e−iΦcR(t′,x′)/
√

2〉 1

|x − x′ − vF (t − t′)|1/2
(4.70)

where we have made use of (4.64) for the spinon operators. The charge correlator
requires first the transformation to decoupled holon fields. Abbreviating sinhφ ≡
s and cosh φ ≡ c, we have

GR↑(t − t′, x − x′) =

= 〈ei(sΦ̃cL(t,x)+cΦ̃cR(t,x))/
√

2 e−i(sΦ̃cL(t′,x′)+cΦ̃cR(t′,x′))/
√

2〉 ×
1

|x − x′ − vF (t − t′)|1/2

= 〈eisΦ̃cL(t,x)/
√

2 e−isΦ̃cL(t′,x′)/
√

2〉〈eicΦ̃cR(t,x)/
√

2 e−icΦ̃cR(t′,x′)/
√

2〉 ×
1

|x − x′ − vF (t − t′)|1/2

=
1

|x − x′ + ṽF (t − t′)|s2/2

1

|x − x′ − ṽF (t − t′)|c2/2
×

1

|x − x′ − vF (t − t′)|1/2
(4.71)

where ṽF is, from (4.35),

ṽF =

√

(

vF +
g

π

)2

−
(

g

π

)2

(4.72)

The final result can be written in the form

GR↑(t − t′, x − x′) =

=
1

|x − x′ − ṽF (t − t′)|1/2

1

|x − x′ − vF (t − t′)|1/2
×

1

|(x − x′)2 − ṽ2
F (t − t′)2|s2/2

(4.73)

The effect of the separation of charge and spin is manifest in the electron Green
function, since the two different velocities vF and ṽF account for the different



36 J. González et al.

propagation speed of charge and spin excitations. It is also remarkable that
the propagation of the fermion field ΨR↑ is not purely in the right direction,
as far as s2 6= 0. The same admixture is also found in the propagator of the
left-handed fermion, which is obtained from (4.73) by replacing vF → −vF

and ṽF → −ṽF . This lack of perfect propagation in a given direction can be
interpreted on physical grounds by the fact that fermions of a given chirality
excite, in its propagation, the fermions of the opposite chirality. Thus, there is
a phenomenon of “reflection”, by which we always find the superposition of two
waves travelling in opposite directions.

Though the electron Green function has the simplest expression in (t, x)
space, the physical properties related to the spectrum have to be addressed in
momentum representation. The above propagator (4.73) does not admit a simple
expression in (ω, k) space, but one may still obtain the Fourier transform of the
factors and write that of the product as a convolution operation. The Fourier
transform of (4.73) becomes then[15]

GR↑(ω, k) ∼ 1

|(ṽF k − ω)(vF k − ω)|1/2
∗ (ṽ2

F k2 − ω2)s2/2−1 (4.74)

where ∗ symbolically denotes the convolution product. The corresponding ex-
pression for the left-handed fermion is obtained again by the replacements
vF → −vF and ṽF → −ṽF . The conclusion that we get by inspection of (4.74)
is that we do not find fermion excitations after looking for poles of the fermion
propagator. Actually, for a given value of the momentum this object has branch
cuts instead of poles. This absence of fermion states in the spectrum is not sur-
prising since, after all, we had already classified the physical states into bosonic
charge and spin excitations. These certainly do appear as poles of the corre-
sponding response functions for charge and spin operators.

The above result is very important since it shows that the Luttinger model
is the prototype for a quite different liquid than that dealt with in Landau’s
Fermi liquid theory. In fact, we may characterize this universality class, called
by the name of Luttinger liquid[4], by the breakdown of the quasiparticle pic-
ture. No matter how small the strength of the interaction may be, all trace of
quasiparticle poles disappears in the electron Green function, and no physical
states remain with the same quantum numbers of the electron.

Another distinctive signal not shared by the Fermi liquid arises from the
behavior of the momentum distribution function n(k) at the Fermi level. This
is again a consequence of the particular form of the correlator (4.74). n(k) is
defined about kF by

n(k) = −i lim
t→0−

∫ +∞

−∞
dx e−i(k−kF )xGR(t, x) (4.75)

In Fermi liquid theory the small imaginary part of the Green function at the
quasiparticle pole leads to the well-known discontinuity of n(k) at the Fermi
level. Now the presence of the branch cut changes the nature of the singularity.
In order to apply correctly (4.75) we need the precise knowledge of the complex
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structure of GR(t, x). This can be found in Ref. [3]. The limit t → 0− fixes the
imaginary part of the Green function

GR(0−, x) =
1

2π

1

x − iδ

1

(Λ2 (x − iΛ−1) (x + iΛ−1))s2/2
(4.76)

where δ−1 is a bandwith cutoff and Λ is a momentum transfer cutoff in the
interaction. By introducing this expression in (4.75) we find

n(k) = −i
1

2π

∫ +∞

−∞
dx e−i(k−kF )x 1

x − iδ

1

(Λ2x2 + 1)s2/2

=
1

2

∫ +∞

−∞
dx e−i(k−kF )xδ(x)

1

(Λ2x2 + 1)s2/2

− 1

2π
PP

∫ +∞

−∞
dx

sin(k − kF )x

x

1

(Λ2x2 + 1)s2/2

≈ 1

2
− const. |k − kF |s

2

sgn(k − kF ) (4.77)

A symmetric expression holds about the other Fermi point at −kF . We see that
the jump in the momentum distribution function, which in the Fermi liquid
equals the residue of the quasiparticle pole, has disappeared. Instead we have a
continuous function, though with infinite slope at the Fermi points. This allows
us, in a certain sense, to maintain the notion of Fermi level in the Luttinger
liquid, as the level at which the derivative of n(k) becomes infinite.

4.2.4 Intuitive Picture of Charge-Spin Separation

To close this section and the chapter, we try to give here an intuitive explanation
of the phenomenon of separation of charge and spin in one dimension. Suppose,
for instance, that we have a periodic disposition of electrons, with antiferromag-
netic order, as shown in Fig. 4.2(a). This cannot represent a physical state of our
one-dimensional theory but we may consider it as a local picture, pertinent to
the ground state of systems like the one-dimensional Hubbard model. It repre-
sents a state free of spin and charge excitations. Suppose now that we introduce
a hole in the system, which amounts to remove the charge and the spin at a given
site of the periodic disposition (Fig. 4.2(b)). If we exchange the empty site with
its neighbor to the left, after repeated application of this operation we observe
that two different kinds of perturbation have been introduced in the system.
We end up with the empty site, which does not disturb the antiferromagnetic
order, and with a “domain wall” (the two consecutive spins pointing up) repre-
senting a frustration of the order (Fig. 4.2(c)). Obviously this frustration can be
also propagated by exchanging neighboring spins at one side of the wall. Thus,
we have the picture of two different perturbations of the original configuration,
free to evolve one independently of the other. The first corresponds to what we
called “holon” in the mathematical framework, while the second is the image of
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↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓
(a)

↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓
(b)

↑ ↓ ↑ ↑ ↑↓ ↓ ↑ ↑ ↑↓ ↓
(c)

Fig. 4.2. Sequence of events showing the creation of a hole and a domain wall of the
antiferromagnetic order.

the “spinon” excitation. This simple picture makes plausible that the “holon”
and the “spinon” may be disjoint excitations, able to propagate each of them
with its own velocity. It also stresses to what extent the dimensionality of the
system is crucial to understand the phenomenon of charge and spin separation.
One can readily see that any attempt to implement this picture in two dimen-
sions is not going to work out with the simplicity shown here. The question of
whether there can be two-dimensional systems with the property of charge-spin
separation similar to that of the Luttinger liquid is nowadays the subject of a
big debate.

exercise 4.3 Check that in the most general Luttinger model with g2‖, g2⊥, g4‖
and g4⊥ interactions the hamiltonian splits into two respective parts for charge
and spin operators.

exercise 4.4 Compute the fermion density operator : Ψ+
R (x)ΨR(x) : using the

boson representation of the fermion field and compare with the former definition
(4.24).
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5. Correspondence from Discrete to

Continuum Models

5.1 Introduction

We have seen in the preceding chapter that the bosonization technique is a very
powerful tool for studying one-dimensional electron systems. We have uncovered
with it the properties of a continuous set of models showing critical behavior
and governing the low-energy physics of a wide region of the parameter space
of all the theories. The very fact of describing a number of critical proper-
ties is actually what justifies the study accomplished in the continuum limit.
One may think that the assumption of an infinite linear dispersion relation for
the electrons is a crucial step in the rigorous proof of the boson-fermion cor-
respondence and wonder to what extent the results obtained by means of the
bosonization program may apply to more realistic models. In particular, any
model of fermions hopping on a lattice must have a compact dispersion relation
of the kind shown in Fig. 3.1 . There is empirical evidence, though, that the
presence of the lattice does not change essentially the low-energy properties and
that the Luttinger liquid paradigm continues applying to a wide class of dis-
crete models. Some of these can be studied analytically by means of the Bethe
ansatz technique, which provides exact results for the energy spectrum and
some thermodynamic quantities. The case of the Hubbard model, for instance,
is treated with detail in Chap. 10. From the exact resolution of the models one
also gets information about the mapping to the Luttinger liquid universality
class. This amounts to the knowledge of the parameters which characterize the
model within the line of critical points obtained in Chap. 3. Thus, different sys-
tems like the antiferromagnetic Heisenberg chain, the spinless fermion model
into which the former can be mapped or the Hubbard model at weak coupling
have a low-energy behavior dictated by points over the critical line. The effect
of the lattice only shows up in the form of certain renormalization of the pa-
rameters determining the critical point. Most significantly, it turns out that the
correspondence to the mentioned universality class holds even in the presence of
strong interactions, as is the case of the harmonic chain or the Hubbard model
in the limit of large on-site repulsion. We will discuss these two models in what
follows. The correspondence with the continuum approach has important con-
sequences from a practical point of view, since it allows to ascertain low-energy
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properties like the charge-spin separation and the long-distance behavior of the
correlation functions in the discrete models. These are not obtained by the ex-
act Bethe ansatz resolution and, in most cases, are not susceptible either of an
accurate numerical determination with the present computational techniques.

5.2 The Harmonic Chain

The first example of discrete one-dimensional model that we consider is the
harmonic chain, which is essentially a system of particles tied by a nearest-
neighbor harmonic oscillator potential[1]. This model does not seem to bear,
at first sight, a direct relation with the continuum electron systems discussed
previously, but it actually provides a good description of the electron liquid
when there are strong correlation effects. This is the case of the large-U limit of
the Hubbard model that we will discuss further on. In that extreme situation
only the charge dynamics becomes nontrivial in the low-energy limit, and it can
be modeled by some elastic coupling provided by the holes between adjacent
electrons in the lattice. A most important point is that the continuum limit
of the harmonic chain adopts the same form that the boson representation of
the Luttinger model. This gives a clear indication that systems in the strong
coupling regime may fall into the Luttinger universality class. The harmonic
chain will also serve us to reach a more intuitive understanding of the boson
description of one-dimensional electron systems.

5.2.1 Continuum Limit

We start with a system of N particles whose first-quantized hamiltonian is

H =
N

∑

n=1

{

P 2
n

2m
+

λ

2
(Xn+1 − Xn − d)2

}

(5.1)

Thus, the particles Xn and Xn+1 suffer a repulsive interaction at short distances,
while they reach a most stable configuration at a relative distance d. The quan-
tum properties of the model are best investigated in the continuum limit d → 0
[1]. Then the label n is promoted to a continuous variable x = nd while the
position of each particle is expanded about the classical configuration, so that

nd → x (5.2)

Xn → nd +
1

2π
d Φ(x) (5.3)

Pn → 2πΠ(x) (5.4)

The fields Φ(x) and Π(x) satisfy the canonical commutation relation

[Φ(x), Π(y)] = iδ(x − y) (5.5)

On the other hand, we have
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Xn+1 − Xn − d → 1

2π
d2 ∂xΦ (5.6)

The hamiltonian in the continuum limit becomes

H =
1

2m

1

d
4π2

∫

dx Π2(x) +
1

2
λd3 1

4π2

∫

dx (∂xΦ(x))2

=
v

2

∫

dx

{

4πµΠ2(x) +
1

4πµ
(∂xΦ(x))2

}

(5.7)

with the parameters

v = d

√

λ

m
, µ =

1

d2

π√
λm

(5.8)

The model is therefore completely specified by the velocity v and the dimen-
sionless parameter µ. We will see afterwards that the latter gives a measure of
the strength of the quantum fluctuations, the classical limit being approached
as µ → 0.

In order to bring the hamiltonian to the canonical free boson form (4.25),
one may perform the transformation

Φ(x) =
√

µΦ̃(x)

Π(x) =
1√
µ

Π̃(x) (5.9)

which, obviously, preserves the canonical commutation relations. In fact, this is
nothing but the real-space version of the Bogoliubov transformation in (4.31)
and (4.32), that we introduced to diagonalize the boson expression of the Lut-
tinger model hamiltonian. Recalling (4.18) and (4.19), we may cast the above
transformation in the already familiar form

(

ΦL

ΦR

)

=





1
2
(
√

µ + 1√
µ
) 1

2
(
√

µ − 1√
µ
)

1
2
(
√

µ − 1√
µ
) 1

2
(
√

µ + 1√
µ
)





(

Φ̃L

Φ̃R

)

(5.10)

which draws the relation between µ and the rotation angle φ of the Bogoliubov
transformation

cosh φ ↔ 1

2

(

√
µ +

1√
µ

)

(5.11)

In the present model one is mainly interested in the correlators of the density
operator ρ(x). In terms of the discrete variables, this is written in the form

ρ(x) =
N

∑

n=1

δ(x − Xn)

=
∫ +∞

−∞

dq

2π

N
∑

n=1

eiq(x−Xn) (5.12)

If we make the passage to the Φ(x) field variable we get
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ρ(x) =
∫ +∞

−∞

dq

2π
eiqx

N
∑

n=1

e−iqdn e−iqdΦ/(2π) (5.13)

A crucial assumption is that the Φ field accounts for a smooth quantum fluc-
tuation effect. In that case the sum over n has a significant value only for
q ≈ 2πm/d,m = 0,±1,±2, . . . In the continuum limit we get a contribution
about each of these dominant momenta

ρ(x) =
+∞
∑

m=−∞
ei2πmx/d ρm(x) (5.14)

For m 6= 0 we have

ρm(x) ≈ 1

d
eimΦ(x) (5.15)

The m = ±1 contributions correspond to the well-known chirality-mixing den-
sity fluctuations near 2kF . In fact, for fermions without spin this quantity equals
2π over the mean separation between particles. What we learn here is that un-
der strong correlation effects, as they occur in the harmonic chain, we may
expect density fluctuations about any integer multiple of 2kF . We may think
of this phenomenon in the same way we understand the Bragg difraction in a
lattice, though it is clear that in the present model we cannot have long-range
order regarding the position of the particles. The square of the relative displace-
ment between these diverges logarithmically with their distance, according to
the two-point correlator of the boson field.

On the other hand, for m = 0, ρ0(x) is the uniform density of the chain.
In the original discrete variables this quantity is 1/(Xn+1 − Xn), which in the
continuum limit becomes

ρ0(x) ≈ 1

d + d2 1
2π

∂xΦ
≈ 1

d
− 1

2π
∂xΦ (5.16)

We recover in this way the expression of the uniform density ρL + ρR in terms
of the boson field Φ = ΦL + ΦR. We see, moreover, the explicit appearance of
the constant mode 1/d, which is nothing but the mean particle density of the
chain. It corresponds to the contribution from the Fermi sea in the Luttinger
model, which we conveniently subtracted out in the definition of the charges
NL and NR. To summarize, the above description makes clear that there is a
correspondence of the dynamics and the observables of the harmonic chain to
those of the boson representation of the Luttinger model[1]. There are higher
harmonic effects from the contributions (5.15), which arise from the discrete
character of the model and survive in the continuum limit, but we may conclude
that the physical properties of the harmonic chain are essentially the same as
those configuring the Luttinger liquid universality class.

5.2.2 Correlation Functions

The correlators of the density field ρ(x) are significant observables in the har-
monic chain. According to the decomposition (5.14), in the two-point density
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correlator we may expect oscillations of any multiple of 2π/d. Each of these
contributions is given by the vacuum expectation value of the product of two
exponentials of the type (5.15). After making the transformation (5.9) to free
fields, one could resort again to the computational technique developed for the
electron Green function in the Luttinger model. Here, however, we want to fol-
low the same steps but implementing a different regularization, better suited to
the discrete character of the model. Instead of dealing with the normal order
prescription for the exponential of the field, we make use of the fact that the
model describes fluctuations about a mean separation d between neighboring
particles. Thus, in the mode expansion of the boson field Φ(x) there is a built-
in short-distance cutoff, which we can make explicit by introducing a factor
exp(−ǫ|k|/2), with ǫ ≡ d/(2π), in the sum over momenta. Following the same
strategy as in (4.63), we get for a typical, say right-handed, free-field correlator

〈eiαΦR(x) e−iαΦR(y)〉 =

= 〈exp

(

−α
∫ ∞

∆

dk√
k
e−ǫk/2e−ikxB+

k

)

exp

(

α
∫ ∞

∆

dp√
p
e−ǫp/2eipxBp

)

×

exp

(

α
∫ ∞

∆

dq√
q
e−ǫq/2e−iqyB+

q

)

exp

(

−α
∫ ∞

∆

dr√
r
e−ǫr/2eiryBr

)

〉 ×

exp

(

−α2

2

∫ ∞

∆

dp

p
e−ǫp

)

exp

(

−α2

2

∫ ∞

∆

dr

r
e−ǫr

)

= 〈exp

(

−α
∫ ∞

∆

dk√
k
e−ǫk/2e−ikxB+

k

)

exp

(

α
∫ ∞

∆

dq√
q
e−ǫq/2e−iqyB+

q

)

×

exp

(

α
∫ ∞

∆

dp√
p
e−ǫp/2eipxBp

)

exp

(

−α
∫ ∞

∆

dr√
r
e−ǫr/2eiryBr

)

〉 ×

exp

(

α2
∫ ∞

∆

dp

p
e−ǫpeip(x−y)

)

exp

(

−α2
∫ ∞

∆

dp

p
e−ǫp

)

= exp

(

−α2
∫ ∞

∆

dp

p
e−ǫp

(

1 − eip(x−y)
)

)

(5.17)

We have performed the computation in the limit of an infinite chain (L → ∞).
Consequently, we can set ∆ = 0 as the integral inside the exponential is well-
behaved in the infrared. The ǫ parameter regulates it in the ultraviolet, giving
the result

〈eiαΦR(x) e−iαΦR(y)〉 = exp
(

−α2 log (1 − i(x − y)/ǫ)
)

= (ǫ)α2

(

i

x − y + iǫ

)α2

(5.18)

It is worthwhile to compare the result (5.18) with that in (4.64) obtained with
the field theory prescription. Using the latter, the exponentials of the boson
fields get effective dimensions with respect to the length L of the system. By
using the discrete approach, the dimensions are given in terms of the chain
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spacing d ≡ 2πǫ. One may think that one method is dual of the other, but the
agreement between the spatial dependences in both cases shows that they are
simply different ways of extracting the long-distance behavior of the correlator.

Putting together the left-handed and right-handed factors, we finally have
for a typical contribution to the density-density correlator

〈ρm(x)ρ−m(y)〉 =
1

d2
〈eimΦ(x) e−imΦ(y)〉

=
1

d2
〈eim

√
µΦ̃(x) e−im

√
µΦ̃(y)〉

=
(

d2
)m2µ−1

(

1

4π2

1

(x − y)2

)m2µ

(5.19)

The power-law decay of the correlators is a reflection of the critical behavior of
the model. The critical properties are however non-universal since they depend
on the interaction strength. We are thus describing a continuous line of critical
points labeled by the µ parameter.

The space-time dependence of the correlators can be inferred from that of
the chiral factors to obtain

〈ρm(t, x)ρ−m(t′, y)〉 =
(

d2
)m2µ−1

(

1

4π2

1

(x − y)2 − v2(t − t′)2

)m2µ

(5.20)

The Fourier transform of the density-density correlator is the dynamical struc-
ture factor of the model S(ω, k) [1]. About k = 2πm/d, this is given by the
Fourier transform of the expression (5.20), that is,

S(ω, 2πm/d + q) ∼
(

d2
)m2µ−1 ∣

∣

∣ω2 − v2q2
∣

∣

∣

m2µ−1
(5.21)

On the other hand, the Fourier transform of the equal-time density-density
correlator gives the X-ray structure factor S(k) [1], which is made of a sum of
contributions about 2πm/d

S(2πm/d + q) ∼
(

d2
)m2µ−1 |q|2m2µ−1 (5.22)

In this object we find the first divergence only for µ < 1/2. In the classical model,
S(k) is given at zero temperature by a sum of delta function peaks, reflecting
the perfect order of the chain. In the quantum theory, this long-range order is
replaced by the tendency to order (“quasi” long-range order) that the power-
law singularity in equation (5.22) shows. It becomes clear that the parameter µ
provides a measure of the strength of the quantum fluctuations. The correlations
become weaker for greater values of µ, when the singularities in S(k) disappear
and the system resembles more a gas. On the contrary, the classical limit is
attained when µ → 0, as more and more peaks appear in the X-ray structure
factor.
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5.2.3 Massive Interactions

The harmonic chain in the continuum limit is governed by the line of critical
points forming the Luttinger liquid universality class. In fact, it has helped us
to give a more concrete meaning to some of the objects that we introduced
in the description of the Luttinger model. Thus, we have visualized the Φ(x)
field as a displacement of the particles about the equilibrium position, and we
have obtained the 2kF oscillation in the density correlator as an effect due to the
quasiperiodic character of the system. As in the Luttinger model, it is clear that
the harmonic chain becomes a system without a gap in the excitation spectrum,
in the thermodynamic limit N → ∞. One may ask, however, whether there is
any relevant interaction which may drive the model out of criticality.

In order to answer this question one has to incorporate the lattice substrate
which is supposed to support the chain of particles. That is, the description
of the chain has not implied up to now any consideration about the crystal
lattice underlying the system. The periodicity of this lattice may not bear any
relation with the mean distance d between the particles. However, when there
is commensuration, i.e. when 2πm/d equals the length G of a vector of the
reciprocal lattice, Umklapp processes appear in which the momentum of the
particles is absorbed by the crystal. In the first instance m = 1, we have an
interaction of the type

HU =
1

2

gU

d

∫

dx (ρ1(x) + ρ−1(x))

=
gU

d2

∫

dx cos Φ(x) (5.23)

The field theory takes the form of the well-known sine-Gordon model, that we
already introduced in Chap. 4. In the quantum theory all the excited states of
this model are massive. In particular, the low-energy excitations are either small
fluctuations about any of the minima of the potential or soliton-like excitations
in which the Φ(x) field goes from one to other of the minima.

We have already seen in Chap. 4 that the soliton-like objects have fermionic
character. In the present context we may understand this in the following way.
A soliton which complies with the boundary conditions

Φ(x) → π , x → ∞
Φ(x) → −π , x → −∞ (5.24)

is an object that, according to (5.3), represents a progressive relative displace-
ment of the particles of the chain going from left to right. The particle placed
to the extreme right is shifted a relative distance d to the right with respect to
that at the extreme left. This is like having effectively one particle less in the
chain. Similarly, the antisoliton complying with the boundary conditions

Φ(x) → −π , x → ∞
Φ(x) → π , x → −∞ (5.25)
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appears like having in the average one more particle in the chain.
As stated before, the soliton-like excitations have a nonvanishing mass in

the quantum theory. After performing the canonical transformation (5.9), the
complete hamiltonian of the field theory becomes

H =
v

2

∫

dx
{

4πΠ̃2(x) +
1

4π
(∂xΦ̃(x))2

}

+
gU

d2

∫

dx cos
(√

µΦ̃(x)
)

(5.26)

The quantum theory is unambiguously defined only for µ < 2 (check this con-
straint with the different normalization used in Ref. [2]). At µ = 1, for instance,
the model is equivalent to a theory of free Dirac massive fermions. We may
arrive at this conclusion by using the boson representation (4.55),(4.56) of the
two fermion chiralities (see also (5.34) and (5.35)). For the above value we have

1

d2

∫

dx cos Φ̃(x) =
1

2

1

d2

∫

dx
(

ei(Φ̃L+Φ̃R) + h. c.
)

∼ 1

2

1

d

∫

dx
(

Ψ+
L ΨR + Ψ+

R ΨL

)

(5.27)

which is nothing but the mass term of a one-dimensional relativistic fermion
theory. For µ < 2, the last term in (5.26) is in general a relevant perturbation of
the critical theory. This can be seen by noticing that, if one were to treat it as a
weak interaction, one would face in a perturbative computation the appearance
of correlators of the form

1

d4
〈cos

(√
µΦ̃(x)

)

cos
(√

µΦ̃(y)
)

〉 ∼ 1

d4

(

d2

(x − y)2

)µ

(5.28)

which diverge in the limit d → 0 as far as µ < 2.
As a consequence of the gap in the excitation spectrum, systems in which

the charge is commensurate with the lattice spacing are genuine insulators. Only
upon doping do fermion kinks (the soliton-like objects) appear in the ground
state configuration, that is the way in which the system may transport charge.
The brief account carried out here stresses the relevance of the lattice effects
in the metal-insulator transition in one-dimensional systems, which is a topic
extensively treated in the literature[3].

5.3 The Hubbard Model

The Hubbard model is the prototype of a system in which the emphasis is placed
on correlation effects between the electrons. In one dimension the model can be
solved exactly[4], the meaning of this being that the energy of the ground state
and of the excited states can be obtained through a system of coupled nonlinear
equations. The exact resolution of the model by the Bethe ansatz technique is
reviewed in Chap. 10. Here we rather want to work out the continuum limit of
the model, in the instances in which this may be feasible. The reason of this
approach to the problem is that, being the interaction purely on-site on the
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lattice, we should expect a simple field theory governing the continuum limit
and, therefore, the low-energy properties of the discrete model. This description
in terms of continuous field variables is of the utmost interest, since the Bethe
ansatz technique does not shed light on the long-distance behavior of the corre-
lation functions. It turns out, however, that the continuum limit of the model
is not so straightforward as in the case of the harmonic chain, for instance,
and that it can be easily established only in the extreme situations of weak
coupling[5] and large on-site repulsion[6, 7]. In the latter case, the procedure is
somewhat heuristic and combines information from the ground state wavefunc-
tion in the large-U limit and from numerical results. A different line of research
has been pursued by applying finite size scaling to the low-energy data obtained
by the Bethe ansatz approach[8, 9]. In this way, a correspondence between the
low-energy excitations in the spectrum and the fields of two independent c = 1
conformal field theories has been drawn. This development has been also used
in the determination of several critical exponents, with apparent success.

5.3.1 Weak Coupling

The Hubbard model in one dimension is given by the hamiltonian

H = −t
∑

i,σ

(

a+
i,σai+1,σ + h. c.

)

+ U
∑

i

ni↑ni↓ (5.29)

where a+
i,σ, ai,σ are fermion creation and annihilation operators and ni,σ is the

number operator at site i for spin σ =↑, ↓. We will be concerned all the time
with the case of repulsive interaction (U > 0). When the on-site repulsion U is
not very large (compared to t), we may expect not very strong correlation effects
and that a sensible continuum limit can be worked out from the microscopic
hamiltonian.

The kinetic part of the hamiltonian poses no problem in that respect. Fol-
lowing the same steps as in the beginning of Chap. 3, we may introduce a
fermion field at each of the two Fermi points in the limit in which the lattice
spacing a goes to zero, that is,

an → e−ikF naΨL(na) + eikF naΨR(na) (5.30)

Some momentum cutoff of order 1/a is implied in the definition of the fields
ΨL, ΨR, which represents no drawback since we are only interested in the low-
energy properties of the model. Inserting (5.30) in the kinetic part of (5.29) we
get, in the limit a → 0,

−t
∑

i,σ

(

a+
i,σai+1,σ + h. c.

)

→

−ivF
1
a

∫

dx
(

−Ψ+
Lσ(x)∂xΨLσ(x) + Ψ+

Rσ(x)∂xΨRσ(x)
)

(5.31)

vF ≡ 2ta sin(kF a)
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The dimensions of the fermion fields are obtained simply by scaling them ac-
cording to the lattice spacing a

a−1/2ΨL,R → ΨL,R (5.32)

With regard to the interaction term in (5.29), the proposal is to promote the
on-site interaction in the lattice to a delta-function type of interaction between
density fields in continuous space[5]. The density operators built up from (5.30)
have a divergent limit a → 0, though, as a consequence of the infinite Fermi sea
which appears in the continuum limit. We may regularize the product of Fermi
fields by the normal order prescription, so that

a+
nσanσ → : Ψ+

Lσ(x)ΨLσ(x) : + : Ψ+
Rσ(x)ΨRσ(x) :

+
(

ei2kF xΨ+
Lσ(x)ΨRσ(x) + h. c.

)

(5.33)

The computation of : Ψ+
LσΨLσ : and : Ψ+

RσΨRσ : is now a little bit different in
the discrete regularization of the theory, compared to the field theory approach
of Chap. 4. The sensible bosonization formulas for the chiral fermion fields read
(we omit spin indices for the time being)

ΨL(x) =
1√
a
e−iΦL(x) (5.34)

ΨR(x) =
1√
a
eiΦR(x) (5.35)

where we do not apply the boson normal order prescription but assume that
the chiral boson fields have a momentum cutoff of order 1/ǫ ≡ 2π/a, i.e.

ΦR(x) = i
∫ ∞

0

dk√
k
e−ǫk/2

(

e−ikxB+
k − eikxBk

)

(5.36)

ΦL(x) = i
∫ 0

−∞

dk
√

|k|
e−ǫ|k|/2

(

e−ikxB+
k − eikxBk

)

(5.37)

With this regularization the calculation of an electron correlator can be done
following similar steps as in (5.17). For free boson fields we have, for instance,

1

2πǫ
〈eiΦR(x)e−iΦR(y)〉 =

1

2πǫ
exp

(

−
∫ ∞

0

dp

p
e−ǫp

(

1 − eip(x−y)
)

)

=
1

2π

i

x − y + iǫ
(5.38)

which gives the free electron Green function with the correct causal prescription.
By using the same method and a point-splitting technique[5], one may also check
that

Ψ+
L (x)ΨL(x) =

1

2πǫ
+

1

2π
∂xΦL(x) (5.39)

Ψ+
R (x)ΨR(x) =

1

2πǫ
+

1

2π
∂xΦR(x) (5.40)
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Normal ordering with reference to the Fermi level just gets rid of the divergent
contributions in the limit ǫ → 0.

In terms of the chiral boson fields, the Hubbard hamiltonian becomes in the
limit a → 0

H =
vF

4π

∫

dx (: ∂xΦL↑∂xΦL↑ : + : ∂xΦR↑∂xΦR↑ : + ↑↔↓ )

+Ua
∫

dx
(

1

4π2
(∂xΦL↑ + ∂xΦR↑) (∂xΦL↓ + ∂xΦR↓)

+
(

Ψ+
L↑ΨR↑Ψ

+
R↓ΨL↓ + h. c.

))

(5.41)

In spite of its appearance, the interaction entering in (5.41) has a sensible limit
a → 0. We recall that its effective strength is given by ∼ Ua/vF , which is
a finite quantity in the continuum limit as long as kF is appropriately scaled
with a. What is not so evident is the scaling of the backscattering term in the
last line of (5.41) and, therefore, if the model may fall into the Luttinger liquid
universality class. We may still give a complete transcription of the hamiltonian
in terms of boson fields, using formulas (5.34) and (5.35),

H =
vF

2

∫

dx
(

4πΠ2
↑ (x) +

1

4π
(∂xΦ↑(x))2+ ↑↔↓

)

+Ua
∫

dx
(

1

4π2
(∂xΦ↑(x))(∂xΦ↓(x))

+
1

(2πǫ)2
(eiΦ↑(x)e−iΦ↓(x) + eiΦ↓(x)e−iΦ↑(x))

)

(5.42)

with
Φσ(x) = ΦLσ(x) + ΦRσ(x) (5.43)

Introducing charge and spin fields

Φc =
1√
2
(Φ↑ + Φ↓) , Φs =

1√
2
(Φ↑ − Φ↓) (5.44)

we see that the dynamics of these two kind of variables completely decouples in
(5.42). The hamiltonian takes the form

H =
vF

2

∫

dx
(

4πΠ2
c (x) +

1

4π
(∂xΦc(x))2

)

+Ua
1

8π2

∫

dx (∂xΦc(x))2

+
vF

2

∫

dx
(

4πΠ2
s (x) +

1

4π
(∂xΦs(x))2

)

−Ua
1

8π2

∫

dx (∂xΦs(x))2

+Ua
2

(2πǫ)2

∫

dx cos(
√

2Φs(x)) (5.45)

The charge sector has the same boson expression as that of the Luttinger model,
while the backscattering term gives rise to an interaction of the sine-Gordon
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type in the spin sector. Following the same procedure as in (5.7), we bring the
hamiltonian to a form easy to diagonalize, in the case that the sine-Gordon
interaction were switched off,

H =
vc

2

∫

dx

(

4πµΠ2
c (x) +

1

4πµ
(∂xΦc(x))2

)

+
vs

2

∫

dx

(

4πηΠ2
s (x) +

1

4πη
(∂xΦs(x))2

)

+Ua
2

(2πǫ)2

∫

dx cos(
√

2Φs(x)) (5.46)

where

vc = vF

√

1 + Ua/(πvF ) vs = vF

√

1 − Ua/(πvF ) (5.47)

µ =
1

√

1 + Ua/(πvF )
η =

1
√

1 − Ua/(πvF )
(5.48)

The charge dynamics can be mapped to a free field theory by a canonical
transformation of the same type as (5.9). A similar transformation in the spin
sector

Φs(x) =
√

ηΦ̃s(x)

Πs(x) =
1√
η
Π̃s(x) (5.49)

leads to a hamiltonian Hs for the spin variables

Hs =
vs

2

∫

dx
(

4πΠ̃2
s (x) +

1

4π
(∂xΦ̃s(x))2

)

+Ua
2

(2πǫ)2

∫

dx cos(
√

2ηΦ̃s(x)) (5.50)

In order to ascertain if the spin dynamics corresponds to that of a Luttinger
liquid (and, in particular, if it is gapless) one has to check the relevance or
irrelevance of the last term in (5.50). This can be done by looking at the scaling
dimension of this operator as ǫ → 0. We recall once again that the effective
coupling constant is given by ∼ Ua/vF , so that when taking the limit we do not
mind about the factor Ua in front of the interaction term. The scaling dimension
can be extracted from the correlator of the cosine operator[5], as we did at the
end of the previous section. We get

1

ǫ4
〈cos(

√

2ηΦ̃s(x)) cos(
√

2ηΦ̃s(y))〉 ∼ 1

ǫ4
〈ei

√
2ηΦ̃s(x)e−i

√
2ηΦ̃s(y)〉

∼ 1

ǫ4

(

ǫ2

(x − y)2

)2η

(5.51)

For the case of repulsive interaction that we are treating here, it is clear that
η > 1, so that the sine-Gordon interaction scales to zero in the continuum limit
ǫ → 0.
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Thus, we may conclude that the Hubbard model at weak coupling is a
system with a gapless spectrum of charge and spin excitations. In the above
considerations it is also implicit that the states of the system can be divided in
two disjoint sectors of charge and spin, respectively, at least in the low-energy
region of the spectrum. Unfortunately, it is also clear from the above treatment
that the applicability of our continuum approach has a limit at a point in which
U/t is ∼ O(1), where formulas like (5.47) and (5.48) become meaningless. It
seems therefore that a sufficiently large on-site repulsion in the lattice becomes
too rough to admit a smooth description in terms of our field variables and that
the inability to capture strong correlation effects in the model is signaled by
the shortcoming of our continuum theory. The singularity in equations (5.47)
and (5.48) cannot have any physical meaning in any event, as long as the exact
solution of the model does not show any discontinuity for U 6= 0.

5.3.2 Large-U Limit. Correlation Functions

We investigate at this point the other extreme situation in the Hubbard model,
namely that in which the on-site repulsion U is sent to infinity. The interest in
considering this limit is that in such case the Bethe ansatz equations simplify
considerably and more information is then available from them. We are not going
into the analysis of the equations since we can easily take the main conclusions
of their study. To begin with, the first important fact is that, in the limit
U → ∞, the ground state wavefunction of the system splits into a factor for
the charge variables times another factor for the spin variables[10]. That is, the
separation of charge and spin is an exact property of the Hubbard model in the
limit U → ∞. Moreover, the wavefunction of the spin variables corresponds to
that of a spin-1/2 antiferromagnetic Heisenberg chain, getting rid of the holes
in the system. The isotropic antiferromagnet belongs to the Luttinger liquid
universality class and its low-energy properties are given by a Luttinger model
hamiltonian

Hs =
vs

2

∫

dx
(

4πΠ2
s (x) +

1

4π
(∂xΦs(x))2

)

(5.52)

The dynamics of the charge sector is more subtle. In the limit of very
large on-site repulsion, it becomes very unfavorable for the system to have two
fermions on the same site, so that it mainly remains in a configuration in which
each particle is confined between its nearest neighbors. These strong correlation
effects are of the kind we have already seen in the harmonic chain. Therefore, we
may tentatively introduce the hypothesis that the charge dynamics is governed
by a hamiltonian like (5.7)

Hc =
vc

2

∫

dx

(

4πµΠ2
c (x) +

1

4πµ
(∂xΦc(x))2

)

(5.53)

In the above expression vc and µ are parameters to be determined. They can be
fixed from the information that one can extract in the Bethe ansatz resolution of
the model. In particular, vc can be obtained from the spectrum of the low-energy
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charge excitations. The value of µ can be determined from the compressibility of
the system. We recall that the constant mode in

√
2∂xΦc/(2π) is to be identified

with the particle density n in the model. Therefore, taking the derivative of
(5.53) with respect to n and applying the Hellman-Feynman theorem we get[6]

1

L

∂2E0

∂n2
=

π

2

vc

µ
(5.54)

where E0 is the ground state energy of the system. The left-hand-side of (5.54) is
nothing but the inverse of the compressibility and can be obtained numerically
from Lieb and Wu exact solution. Nice curves of µ as a function of the on-
site repulsion U and the particle density n obtained by this method are shown
in Ref. [6]. From them one gets clear evidence that in the limit of very large
repulsion µ → 1/2, irrespective of the value of the particle density.

The knowledge of the µ parameter is of particular interest, since it dictates
the long-distance behavior of a number of correlators. The general structure of
the correlation functions of the discrete model is, at large x,

〈Ψ(x)Ψ+(0)〉 = a0
1

xα0

cos(kF x) + a1
1

xα1

cos(3kF x) + . . . (5.55)

〈ρ(x)ρ(0)〉 =
µ

π2

1

x2
+ b1

1

xβ1

cos(2kF x) + b2
1

xβ2

cos(4kF x) + . . . (5.56)

〈σ(x)σ(0)〉 =
1

π2

1

x2
+ c1

1

xγ1

cos(2kF x) + . . . (5.57)

ρ(x) being the charge density operator and σ(x) the spin density operator. We
are omitting at this point logarithmic corrections to the above power-law de-
cays, which affect in particular to the 2kF harmonic contributions to the charge
density and spin density correlators[11]. The 4kF and higher harmonics in these
functions, as well as the 3kF and higher harmonics in the electron Green func-
tion, arise due to the discrete character of the model[12], as we already learned
from the study of the harmonic chain. These contributions cannot be obtained
sticking strictly to the computational framework of the Luttinger model and
their consideration requires a modification of the standard bosonization formu-
las incorporating the lattice effects[13].

The critical exponents giving the dominant behavior in equations (5.55)-
(5.57) have been estimated numerically in the large-U limit by several authors.
We are now in a position to test whether the Luttinger model description synthe-
sized by (5.52) and (5.53) is able to predict the correct values of the exponents.
Focusing first on the electron Green function, the determination of α0 follows
the same steps as in (4.71). We have to remind the correspondence (5.11) be-
tween µ and cosh φ in that equation, which gives in the present case c2 = 9/8.
Thus, we are predicting an exponent α0 = 9/8 for the dominant behavior of
the electron Green function. In a numerical computation one usually measures
some observable defined from that object as, for instance, the momentum distri-
bution function. In our Luttinger model description, this must have a singular
behavior at kF of the type (4.77), with s2 = 1/8. The numerical estimates range
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between 0.13 and 0.15 [10], and a refined finite size analysis of the results gives
an exponent ≈ 0.126 [14]. This is in very good agreement with the theoretical
prediction, taking into account that the extrapolations are made from measures
over relatively small systems.

Regarding the charge density and spin density correlators, the 1/x2 contri-
butions stem from the correlations of the first two terms in (5.33), while the 2kF

oscillations arise from the hybridization of left and right modes in the density
fields. In the case of the charge density, for instance, we have

ρ(x) =

√
2

2π
∂xΦc +

1

2πǫ

(

ei2kF xeiΦ↑ + h. c.
)

+
1

2πǫ

(

ei2kF xeiΦ↓ + h. c.
)

(5.58)

We need to compute the correlators between the 2kF harmonics in (5.58). This
can be done again making first the transformation to free fields and using the
formula (5.18). We have, for instance,

〈eiΦ↑(x)e−iΦ↑(0)〉 =

= 〈ei
√

µΦ̃c(x)/
√

2 eiΦs(x)/
√

2 e−i
√

µΦ̃c(0)/
√

2 e−iΦs(0)/
√

2〉

∼ 1

(x2)µ/2

1

(x2)1/2
=

1

|x|µ+1
(5.59)

It can be seen that our continuum approach gives the same prediction for
the exponents β1 in (5.56) and γ1 in (5.57), which according to (5.59) is β1 =
γ1 = 3/2. On the other hand, the spin correlation function has been the object
of a thorough numerical investigation[10, 14]. The results of Ref. [10] place the
exponent γ1 between 1.3 and 1.45, while the finite size analysis of the same
data seems to give γ1 ≈ 1.48 [14]. Again, this is a clear confirmation of the
applicability of the Luttinger model description to the Hubbard model at very
large on-site repulsion.

It has to be stressed that, contrary to the procedure followed in the weak
coupling regime, we have not been able to formulate an analytical correspon-
dence from the microscopic Hubbard hamiltonian in the large-U limit to the
continuum field theory description of the model. In this sense, our approach
has been rather heuristic. There have been also other attempts to develop a
picture of the low-energy excitations of the model, at arbitrary U , either clas-
sifying the different states which appear in finite systems[15] or establishing
the correspondence with conformal field theory through finite size scaling[8, 9].
The conclusion that one reaches is that the low-energy limit of the model may
be given by a simple field theory (two c = 1 conformal field theories, one of
them with varying radius of compactification), yet it is not known how to bring
explicitly the strongly correlated system into the framework of continuum field
theory.
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